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Abstract

The paper offers a proof that expected utility maximisation with logarithmic utility is a dominant preference in
the biological selection process in the sense that a population following any other preference for decision-making
under risk will, with a probability that approaches certainty, disappear relative to the population following this
preference as time goes to infinity. The result is contrasted with Weber’s and Fechner’s Psychophysical Law which
implies logarithmic sensation functions for objective physical stimuli.

Key words: risk, evolution

JEL Classification No.: A12, D8

1. The biological roots of our preferences

For the methodological individualist the preferences of man are sacrosanct. They are taken
as given indisputable facts on which both normative and positive theory are built. Homo
oeconomicus, endowed with rational skills, acts so as to maximise his utility, given the
constraints imposed by nature and markets he is facing.

However, preferences are, in fact, just a trick of nature to induce us to behave in a way that
satisfies the rules of biological evolution. Evolution has produced instincts and automatic
reactions that translate stimuli directly into human behaviour, but the real achievement of
evolution is to endow us with intelligence, memory and preferences, thereby allowing a much
more flexible and better response to whatever the constraints are that nature imposes on us.

The true preference of evolution is genetic survival and dominance, but for the purpose
of efficiently directing our behaviour nature has replaced this preference with a rich body
of surrogate or instrumental preferences, all too often without even revealing the trick to
us. We like to rest after a long walk because we feel tired, and not in order to help our body
restore its chemical and physical balance. We avoid pain because it hurts, not because we
consciously want to avoid damage to our muscles, tendons, organs or joints. We like to eat
because we feel hungry, not to refill our energy reservoirs, and we drink when we are thirsty,
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not because we have diagnosed that our blood has become too thick. We like it warm when
we feel cold, and the other way around, because that gives us a pleasant feeling, not because
we know that the body temperature has to stay at 37 degrees Celsius. And of course, we
like to have sex when we have found an attractive partner, because this is how we feel, not
because we want to reproduce our genes. In all cases we use our intelligence to find ways
to satisfy our surrogate preferences, which basically aim at maintaining our genetic fitness
and ensure reproduction, without really making us know what we are doing.

Maybe the difference between instincts and preferences is not all that large and more a
matter of subjective impression than objective facts. There is a continuum in the degree of
strictness in the stimulus-response relationship, from deterministic rules to a more flexible
relationship that is modified by learning and reflection. And there is no fundamental dis-
tinction between animals and man—as between animals and plants—only a distinction of
degree. Nevertheless, economic science, which builds its theories on the assumption that
rational individuals maximise their utility, should be interested in the question as to which
preferences of man have been formed by evolution and why they have been formed.

There is a hierarchy of decisions in which human beings are involved and hence a hierar-
chy of preferences directing these decisions. Individual preferences explain the behaviour
of people within firms and households. The preferences of households and firms explain
the functioning of markets and political systems. National policy goals explain the out-
come of systems competition. Economists have been interested in the interaction between
preferences, rules of the game and final outcomes on each of these levels in the decision
hierarchy, but the bottom of this hierarchy, the influence of natural selection on human
preferences, has found much less attention. Encouraged by the new field of socio-biology
as developed by Smith [1964], Wilson [1975], Dawkins [1976] and others, things have been
changing, however. There is a growing body of economic literature on the biological basis
of economic behaviour dealing with the issue as is summarised by Robson’s [2001] recent
review article.1

The instrumental preferences which steer our behaviour are not always useful. Man and
his predecessors have been formed over hundreds of millions of years. They were designed
and optimised by evolution for a world which was very different from the short period
of cultural history of only 10,000 years or so, let alone the history since the industrial
revolution. In the modern world, living conditions are so fundamentally different from all
the time before that some of the preferences, which once were useful instruments helping our
genes survive, no longer fulfil their original tasks. They induce a behaviour which nowadays
is futile or even disadvantageous from an evolutionary perspective. Violence, overweight
or sex with contraceptives are examples of this kind. Nevertheless the theory of biological
evolution retains its validity as a positive explanation for why we want what we do.

Among the preferences formed by evolution, risk preferences must have been of particular
importance, because rarely has there been a deterministic relationship between a man’s
actions and the number of offspring that could be nourished. What really happened after
an economic decision depended not only on this decision, but also on the random draw of
nature. In a cumbersome, and in most cases detrimental, trial- and error process, evolution
must have found ways to efficiently deal with the problem of economic decision-making
under risk. This is the theme of this lecture.
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When making decisions, men, animals and even plants have to choose between probability
distributions of resources that have direct consequences for reproduction success, and some
potential decisions must have been better than others in terms of helping survival and growth
of the population. It can be suspected that the blind process of genetic mutations has tried
out a large many preference patterns for how to deal with the choice among probability
distributions and has even found the pattern that maximised success in the natural selection
process.

There are a few economic studies in the evolutionary generation of risk preferences.
McAfee [1984] as well as Karni and Schmeidler [1986] derived the expected utility hy-
pothesis from an individual’s goal of maximising life expectancy and a principle of self-
preservation. Assuming that individuals want to maximise the expected number of offspring,
Cooper [1987] argued that evolution even respects Savage’s axioms if no objective prob-
abilities are available and Robson [1996a] showed that a concave production function for
offspring implies risk aversion.2 Sinn and Weichenrieder [1993] argued that evolution se-
lects logarithmic von Neumann-Morgenstern optimisers that obey the axioms of expected
utility theory, referring to the law of large numbers in a multiplicative intergenerational
selection model, and this view was also adopted by Robson [1996b, 2001].

Here, I basically follow the Sinn-Weichenrieder approach, extending it by adding a proof
of the evolutionary stochastic dominance of logarithmic risk preferences.3 I also elaborate
on the analogies between the Weber-Fechner law of psychophysics and the outcome of
natural selection, a topic which I find stimulating and puzzling, without being able to give
definitive answers here.

2. Reproduction, risk and the goal of evolution

Evolution has no goals, but it follows the rules of natural selection. Traits that are inefficient
die out, and only the more efficient ones remain, forming phenotypes which are better and
better adapted to their environment.

It is often said that natural selection maximises fitness. It is, however, unclear what fitness
really means, in particular for nature’s choice of economic preferences. Fitness is a catch-
all concept that has different interpretations, depending on the natural selection problem
studied. To see what fitness would mean in an economic model of preference selection,
consider a simple biological growth model. At time zero there are two alternative initial
populations A and B of sizes G A

0 and G B
0 which, because of earlier random mutations, have

different, hard-wired preferences that translate into their reproduction speed. Dependent on
his choice and the deterministic state of nature (or the environment) in period t , a parent of
type i , where i = A, B, living in period t −1, has the number of offspring Qi

t in period t . Qi
t

is a growth factor for the population because multiplying it by the size of the old generation
gives the size of the new one. Accordingly Qi

t − 1 is the growth rate of the population
measured over a period of the length of one generation. After T generations, the population
of type i will have a size of

Gi
T = Gi

0

T∏
t=1

Qi
t , i = A, B. (1)
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Suppose that type A always has more offspring than B in the sense that Q B
t ≤ Q A

t · γ , γ =
const. <1, ∀t > 0. At time T, T > 0, the size of population B relative to A will then satisfy
the inequality

G B
T

G A
T

= G B
0

G A
0

T∏
t=1

Q B
t

Q A
t

≤ G B
0

G A
0

γ T (2)

which obviously implies that, whatever the initial population sizes, population B will vanish
relative to A with the passage of time:

lim
T →∞

G B
T

G A
T

= 0. (3)

Thus, in a deterministic environment, evolution will select the preference that results in a
higher number of children per parent or, equivalently, a higher growth rate of the population.

Suppose now that initial mutations have produced not only two different variants of
preference, resulting in two different values of the growth rate, but a sufficiently large
variety to include the one which maximises the growth rate, given the constraints which
nature is imposing. Clearly, this preference is unbeatable. With the passage of time it will
become dominant over all others in terms of the number of people exhibiting it.

This has straightforward economic implications if it is assumed that the number of chil-
dren a parent has is proportional to the amount of resources he commands. Suppose the
parent makes a decision about where to erect his home (or nest), which territory to claim,
which type of food to store or how and how much to invest in the human capital of his
offspring which, one generation later, results in a particular resource flow that is available
and enables the next generation to itself reach reproduction age. The resource flow available
to a generation depends on both the parents’ last period decision and the known state of
nature. Under Malthus’s law, fertility is not a limiting factor, but the resources available for
the offspring determine the number of them that survive to reproduction age. It follows that
men and animals would be (human and material) wealth maximisers if the environment
were deterministic. The preference for maximising economic wealth, in a broader sense of
the word, would be the solution to nature’s problem of choosing the right preferences.

The question now is how this result can be generalised to the stochastic case. Suppose
that the state of nature at time t is random and that the wealth implications of the actions of
a parent at time t − 1 cannot be predicted with certainty. The result instead takes the form
of a probability distribution of potential wealth levels and hence a probability distribution
of the surviving number of offspring.

It is often argued that, in this case, natural selection produces the preference to maximise
the probability of survival. To check this claim, assume that the growth factors Q A

t and Q B
t

may become zero with strictly positive probabilities which then implies extinction. Let pi
t

denote the transitional probability of survival of population i from period t − 1 to period t
and let Pi

T be the probability that population i is still around in period T , given that it exists
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in period 0. Stochastic independence between the periods implies that

Pi
T =

T∏
t=1

pi
t , i = A, B. (4)

Suppose population B has a smaller survival probability in all periods than A in the sense
that pB

t < pA
t β, β = const. <1. Then it is clear that the survival probability for B relative

to that for A, which satisfies the equation

P B
T

P A
T

≤ βT , (5)

will go to zero with the passage of time. This has only limited significance for natural
selection though, for, when both pB

t and pA
t are bounded away from unity, both populations

will become extinct with a probability that approximates certainty when time goes to infinity.
However, it is important to note that evolution brings about a lexicographic preference

ordering between survival as such and growth in the case of survival, with no substitution
possibilities between these two “goals”. Suppose, in the above case, population A has
a lexicographic preference and B has a substitutive preference. A avoids behaviour that
involves the possibility of extinction even if a high price in terms of a lower growth rate in
the case of survival or even a lower expected growth rate has to be paid, but B prefers a
high growth rate in the lucky case of survival, accepting a certain probability of extinction:
pA

t = 1∀t such that P A
T = 1 while pB

t ≤ β, β = const. <1. Then, regardless of the size
of this growth rate, (4) reveals that population B including its particular non-lexicographic
preference will become extinct with a probability that approaches unity when time goes to
infinity while population A survives despite its lower growth rate. This undoubtedly has an
important meaning for the preferences of mankind and evolution as such. As a biologist
once expressed it: survival must have been a dominant ability, because among the trillions
of predecessors of a person living today, from the first cell to his own parents, there wasn’t
a single one that died before reproduction age.

The absence of a trade-off between the survival probability and other goals shows that
nature’s true problem of the choice of preferences in the stochastic case is the choice between
probability distributions of wealth that exclude extinction.

Compare again two initial populations, A and B whose risk preferences differ due to
previous mutations. The members of both populations can choose in each period from the
same set of probability distributions of growth factors, but their preferences are different and
thus they choose different distributions. Let Qi

t be the distribution chosen by a member of
generation t of population i and exclude extinction by assuming that Qi

t > 0, i = A, B. The
random variables Qi

t are stochastically independent across the generations, but perfectly
correlated within the generation of a gene pool due to the common influence of nature. The
variables may or may not be correlated across the gene pools.

By way of symmetry with the above reasoning for the case of certainty it can be suspected
that natural selection will now pick a preference that leads to the maximisation of the
expected growth factor EQt in each period and hence of the expected wealth or resource
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flow to endow the next generation. Suppose that A always picks the highest expected value
of the growth factor, while B follows another criterion, which implies a lower value of the
expected growth factor such that EQ B

t ≤ γ EQ A
t , γ = const. <1, ∀t > 0, notwithstanding the

possibility that Q B
t will take higher values than Q A

t for certain states of nature. Analogously
to (1), after T generations, population i will have an expected size of

EGi
T = Gi

0

T∏
t=1

EQi
t , i = A, B, (6)

and the expected size of population B relative to that of A will satisfy the inequality

EG B
T

EG A
T

= G B
0

G A
0

T∏
t=1

EQ B
t

EQ A
t

≤ G B
0

G A
0

γ T (7)

which obviously implies that, whatever the initial population sizes, the expected value of
population B will vanish relative to the expected value of population A with the passage of
time:

lim
T →∞

EG B
T

EG A
T

= 0. (8)

Thus, it seems that the analogy to the deterministic case holds. Choosing in each period the
probability distribution of wealth or offspring with the higher expected value, i.e. choosing
the higher expected growth rate EQ A

t − 1, will, as time goes to infinity, lead to an expected
value of the population which, relative to the size of the other population, goes beyond all
bounds. Conversely, choosing always the distribution with the lower expected growth rate
will imply that the relative magnitude of the expected population size will go to zero as
time goes to infinity.

However, contrary to first appearances, Eq. (8) has little meaning for natural selection
because a vanishing expected value of the relative population size is not the same as a
vanishing relative population size itself. The aggregate probability distributions of popula-
tion size at T are extremely skewed, approaching the log-normal distribution as T goes to
infinity. It is possible that a distribution has a higher expected value than another one even
though it has less probability mass concentrated on higher variates.

The forces of natural selection must therefore be described differently. To understand
them, consider the concepts of selective quality and selective dominance. Define a preference
having a higher selective quality than another one if, with a probability approximating
certainty, it will lead to a higher population in the long run. And define a preference being
selectively dominant if, in relation to the population path it generates, the population sizes
resulting from all other (strictly different) preferences converge to zero with a probability
that approximates certainty as time goes to infinity.

Referring to the law of large numbers, Sinn and Weichenrieder [1993] argued that the
maximisation of the expected logarithm of the growth factor has the highest selective quality
in the above sense, and they claimed that this preference would also satisfy the criterion
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of selective dominance. The claim was adopted also by Robson ([1996], p. 410f; [2001],
p. 22). However, to the best of my knowledge, no one has yet delivered a proof.4

Only the proof that the maximisation of the expected logarithm of the growth factor
has the highest selective quality has been given in terms of a multi-period comparison of
portfolio optimisation strategies. Using Chebychev’s inequality for the logarithms of final
wealth, it can be shown that the maximisation of expected logarithms in each period will,
with a probability that approximates certainty, indeed generate a higher final outcome than
any other strategy if time goes to infinity.5 However this is not the same as the strict selective
dominance in the sense defined above. Will it really be true that the other preferences lead
to populations sizes that vanish relative to the logarithmic expected utility strategy? This is
the question to be addressed next.6

3. Logarithmic von Neumann-Morgenstern utility and selective dominance

The basic observation leading to the expected logarithm criterion follows from the fact that
the multiplicative connection between the generations as given by (1) becomes an additive
one if the logarithms of this equation are taken. In general, the logarithm of population
size at time T is the logarithmic sum of the original population size and the period specific
growth factors:

ln GT = ln G0 +
T∑

t=1

ln Qt . (9)

This makes it possible to apply the law of large numbers and show that the preference of
maximising E lnQt will have a higher selective quality than any other preference. With a
probability that approaches certainty as time goes to infinity this preference will yield a
higher population size than all other rivalling preferences.

However, having the highest selective quality does not mean that other preferences will
vanish from the gene pool. The proof for such an outcome is more subtle. Let A denote
the preference that maximises the expected logarithm of wealth and hence the expected
logarithm of the number of offspring per parent in each period and let B denote another
preference that results in a different choice from the set of probability distributions of Qt

available at a given point in time such that the difference in the expected logarithms is
bounded away from zero, while it can be as small as we wish:

E lnQ A
t − E lnQ B

t ≥ γ + ε ∀t > 0, γ, ε = const. > 0. (10)

Moreover assume that, with the passage of time, the variance of the difference Q A
t − Q B

t
remains bounded from above in the sense that

Var
(
Q A

t − Q B
t

) ≤ δ = const. > 0 ∀t > 0, (11)

which is a weak technical assumption.7 Under these conditions, preference A will strictly
dominate preference B in natural selection.
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To prove the selective dominance of preference A it is sufficient to show that

lim
T →∞

P

(
G B

T

G A
T

≥ e−εT

)
= 0. (12)

Here P(·) denotes the probability that the size of population B (the non-expected logarithm
maximiser) in relation to population A (the expected logarithm maximiser) remains larger
than a positive quantity, e−εT , that shrinks indefinitely at a rate ε per generation, ε being the
constant used in (10). Equation (12) says that this probability goes to zero with the passage of
time. This is the same as saying that population A, which maximises the expected logarithm,
will come to dominate the entire gene pool with a probability that approximates certainty
as time goes to infinity.

To prove Eq. (12), consider Chebyshev’s inequality

P(|X − EX | ≥ α) ≤ Var X

α2
, α = const. > 0, (13)

where X is an arbitrarily distributed random variable. This inequality implies a fortiori that

P(EX − X ≥ α) ≤ Var X

α2
.

Defining α ≡ EX > 0, we can write Chebyshev’s inequality in the form

P(X ≤ 0) ≤ VarX

E2 X
. (14)

Let X denote the difference in the logarithms of population sizes at time T minus a term
εT which grows in proportion to time:

X ≡
T∑

t=1

ln Q A
t −

T∑
t=1

ln Q B
t + c − εT, c ≡ ln G A

0 − ln G B
0 . (15)

After taking expectations and using (10) it follows that

EX ≡
T∑

t=1

E ln Q A
t −

T∑
t=1

E ln Q B
t + c − εT ≥ T γ + c. (16)

If population B is initially larger than population A, c < 0 and hence it is possible that the
assumption EX > 0 is not satisfied because the term behind the inequality sign in (16) is
negative. However, with the passage of time, any initial size disadvantage of population A
will be outperformed by the higher value of the expected logarithm population A adds in
every period. Thus the term behind the inequality sign will become positive in finite time:

T γ + c > 0 for T sufficiently large. (17)
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It is understood in the following equations that T has already become large enough to satisfy
this condition. The intertemporal stochastic independence8 and (11) imply that

Var X =
T∑

t=1

Var
(
Q A

t − Q B
t

) ≤ T δ. (18)

It follows from (14), (16) and (18) that

P(X ≤ 0) ≤ T δ

T 2γ 2 + c2 + 2T γ c
= δ

T γ 2 + c2

T + 2γ c
(19)

which obviously gives

lim
T →∞

P(X ≤ 0) = 0. (20)

Now reconsider the definition of X as given in (15) and transform that expression, using
(9), as follows:

X = ln G A
T − ln G B

T − εT

= ln
G A

T

G B
T

− εT

= ln

(
G A

T

G B
T

e−εT

)
. (21)

As this implies that

X ≤ 0 ⇔ G B
T

G A
T

≥ e−εT (22)

Equation (20) is equivalent to (12). This completes the proof.

Proposition: Suppose, the maximisation of the expected logarithm of the number of off-
spring (and wealth) has been among the preference structures for decision-making under
risk that nature has tried. Then this preference structure will, with a probability that ap-
proaches certainty, be chosen by a fraction of the aggregate population that approaches
unity as time goes to infinity.

4. Interpretation

Nature may have tried very many different preference structures with regard to decision-
making under uncertainty, including rules of thumb, non-expected utility theories, expected
utility approaches with different utility functions or all the other criteria which the theoret-
ical literature on decision-making under uncertainty has brought about. If expected utility
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maximisation with logarithmic utility had been among the trials, it would have been the
winner, allocating only vanishing fractions of the population to the rivalling preference
structures.

Interestingly enough, even the preference of maximising the expected number of off-
spring, EQt or, equivalently, the expected growth rate of the population, EQt − 1, which
in the last section was shown to result in a dominant development of the expected popu-
lation size, is outperformed by the logarithmic maximisation criterion. Risk neutrality in
the choice of probability distributions of wealth and offspring may come relatively close
to the optimum if compared to most other strategies, but even this type of preference is
strictly inferior and must have disappeared relative to the best preference studied here. Risk
neutrality is no dominant trait in biological evolution.

The fact that risk neutrality is inferior may look surprising if account is taken of the fact
that risk choices are repeated in a similar way again and again in the process of evolution.
The law of large numbers works, as has been shown. However, it does not imply a tendency
towards risk neutrality as is normally the case when diversification and repetitions are
possible. The reason lies in the multiplicative way risks are connected via the generations.
If a generation participates in many different and stochastically independent gambles within
the same period, the outcomes of these gambles can normally be added. The law of large
numbers makes it possible to exhibit no, or only a low, degree of risk aversion in the
choice of independent risks. Only the sum of all income and wealth effects enters the shape
of a generation’s probability distribution Qt . The multiplicative connection between the
generations makes the difference, though. It implies that a mistake that is made in one
generation will reduce the population size for all times relative to what it otherwise would
have been. There is no chance to recoup.

On the other hand, the chance to recoup within a generation may be even larger than
a purely individual perspective would suggest. The above analysis considered risks that
resulted from the randomness of nature and that applied to all individuals living at a time,
at least all individuals belonging to the same gene pool. However, there may also be other
risks which are more or less independent across the contemporaneous members of a gene
pool. Depending on the size of the relevant population bearing the same gene, individuals
can be fairly risk neutral with regard to these risks because nature can diversify across
all individuals of this pool. If nature has spread the genes that steer risk taking behaviour
among many individuals, there is no need for these individuals to mutually co-insure their
wealth levels. What matters for the success of the gene pool is the variation in the aggregate
wealth of all individuals taken together, and the variation in this aggregate can be small
even if it is large for a single individual. As there is no risk aversion “in the small”, an
individual can be risk neutral with regard to independent risks when the gene pool is
large.

This may help explain why humans and animals are willing to become “heroes” and risk
their lives for the benefit of the community and why most of the idiosyncratic wealth risks
of mankind remain uninsured. Biological selection imposes limitations on the insurance
business and other risk consolidation mechanisms. People primarily seek insurance against
correlated risks, but it is exactly this type of risk which is difficult to insure. True, the
usual explanation for the lack of insurance markets which is based on adverse selection and
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asymmetric information is a powerful one. However, biological diversification across the
individuals of a gene pool is an alternative, additional explanation worth discussing.

These statements are suggested interpretations, and they certainly need to be qualified
insofar as an overly simplified assumption has been presented here to depict the relationship
between wealth and the number of offspring. The basic result of this paper is that the
maximisation of the expected logarithm of offspring is the goal of evolution. That this goal
also implies a logarithmic von Neumann-Morgenstern function for wealth is a corollary
based on the assumption of proportionality between wealth and the number of offspring. It
is true that this assumption follows from Malthus’ Law and is appropriate for a great many
species. However, this law is only an approximation when the probability distributions of
wealth are so widely dispersed that natural fertility may also become a constraint on the
number of offspring. In this case, there will obviously be an additional reason for risk
aversion which adds to the one implied by the logarithmic function. A logarithmic utility
function for low and moderate wealth levels and a more strongly curved utility function for
higher wealth levels results from this consideration. This is another justification for Arrow’s
([1971], pp. 90–120) conjecture that man’s utility exhibits the property of increasing relative
risk aversion with values of one for intermediate wealth levels and above one for high wealth
levels.9 It would be useful for future research to study the relationship between wealth and
the number of offspring in more detail in order to identify further implications for risk
aversion. A rich set of sophisticated models is conceivable in this regard.

A noteworthy implication of the proposition, which was already pointed out in Sinn
and Weichenrieder ([1993], p. 76) and which is independent of the functional relationship
between wealth and the number of offspring, is that “blind” evolution may have been able to
reproduce the expected utility rule as such and with it the underlying axioms: Men, animals
and plants that were produced by evolution can indeed be expected to possess a rational
ordering of probability distributions, to be able to assess indifference probabilities and to
satisfy the much-criticised independence axiom, having consistent judgements between
probability distributions before and after the results of other lottery draws have become
known. Allais’s paradoxes may be a matter of concern in the unnatural choice situation
of the experimental laboratory, but not in real-life decision problems that are fraught with
grave consequences for one’s offspring.

5. The Weber-Fechner law

Regardless of the necessary qualifications of the logarithmic utility function, I see a puzzling
aspect of the result presented above in the kinship and similarity with Weber’s law in
psychophysics, sometimes also called Weber-Fechner law. In his path-breaking weight
experiments Weber [1834] found that stimuli thresholds are a constant fraction of the
existing stimuli. For example, he placed a weight on a person’s hand and increased it
gradually, asking the person to reveal when he felt the increase. The threshold weight
increment turned out to be a constant fraction of the existing weight over the normal range
of weights a person would handle in everyday life. The experiments were repeated with
other kinds of stimuli like light, sound, odours and others. Weber’s law of constant relative
thresholds turned out to be extremely robust.
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Most of the additional experiments were carried out by Fechner [1860] who established
the field of psychophysics which, in the nineteenth century, had attracted a great many
scholars. Fechner interpreted the threshold as the units of subjective sensation and argued
that the sensation function is logarithmic since equal relative changes in the stimuli brought
about equal absolute changes in sensation. He called this the Psychophysical Law.

Fechner’s interpretation has been criticised on the grounds that his reference to subjective
sensation was metaphysical. One of the most intense critics was Stevens [1962, 1975], who
had carried out a great number of so-called cross modality experiments, asking people
to make light as bright as a sound was loud, a handgrip as tight as a light was bright and
similar things. Stevens argued that, in general, the correlation he found in his cross-modality
experiments could be described by power functions rather than logarithmic functions.

However, Ekman [1964] and Ekman and Sjöberg [1965] showed that Stevens’s cross
modality experiments were lacking an anchor that would link them to the true introspective
sensation and that, in fact, they were fully compatible with underlying logarithmic sensation
functions. The so-called interval measurement experiments where people were asked to
increase the intensity of a physical stimulus in subjectively equal steps, uniformly supported
the Psychophysical Law without contradicting Stevens’s findings.

Further support for this law comes from direct neuro-physiological measurements of spike
frequency in nerve fibres in relation to physical stimuli arriving at receptor organs. There
is a rich body of literature following the seminal work of Fröhlich [1921] and Hartline and
Graham [1932] which has found that, in the relevant stimulus range, the spike frequency
is a logarithmic function of stimuli like light, loudness, weight, acid concentration and
others.

Indeed, it seems that our perception apparatus in general is based on the relative mag-
nitudes of signals and stimuli that we recognise. We can identify objects in bright and
dim light alike, because the light intensity ratios on the retina stay constant. We perceive a
melody independently of the octave in which it is played and the distance from where we
hear it because the ratios of sound frequencies and loudness pressures stay constant. We
drive our car at a multiple of our natural body speed without difficulties, and we live our
luxurious lives with a multiple of the wealth our ancestors commanded because we perceive
and react to ratios rather than absolute levels. The Weber-Fechner Law seems to be one of
the fundamental constants of the way men and animals are constructed.

Even Bernoulli [1738] himself argued that the utility function of man is logarithmic when
he published his famous article on the expected utility theory. To use his words: If a person
. . . “has a fortune worth a hundred thousand ducats and another one a fortune worth the
same number of semi-ducats and if the former receives from it a yearly income of five
thousand ducats while the latter obtains the same number of semi-ducats, it is quite clear
that to the former a ducat has exactly the same signifcance as a semi-ducat to the latter . . . ”
Bernoulli had adopted the expected utility theory as such from the mathematician Cramer,
and his own contribution was the logarithmic function.

In earlier work (Sinn [1980, 1985]) I criticised the argument that logarithmic introspective
utility would automatically translate into logarithmic expected utility on the grounds that
two people with the same function for introspective utility of deterministic wealth could still
differ with regard to their risk-taking behaviour. I argued that the Weber-Fechner law would
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instead imply the class of constant relative risk aversion functions of which the logarithmic
function is only a special case.

I must now admit that the case for a logarithmic expected utility function is stronger than
I had thought since it is this function that seems to result from natural selection. Bernoulli
may have been right after all and Fechner’s interpretation of Weber’s law may carry over to
the shape of the von Neumann-Morgenstern function in a much more direct way than could
have been expected.

I am not sure about the causal relationship between the selective dominance of the loga-
rithmic expected utility function and the Weber-Fechner Law. When I first wrote about that
law a quarter of a century ago, I argued that it resulted from the fact that the signals recognised
by our body are encoded in relative language. Equal ratios of sound frequencies, loudness
pressures and light intensities mean the same thing and require similar kinds of reaction.

I find it puzzling that the Psychophysical Law of Weber and Fechner now turns out to
have the advantage of selective dominance over all other shapes of the utility function for
economic decisions under uncertainty. Are there two separate reasons for the same trait of
human preferences or do both reasons reflect a common deeper law of nature? This is a
puzzle I have not been able to resolve.
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Notes

1. There is also a growing literature in the reverse direction, introducing economic concepts to biology. See, for
example, Stephens and Krebs [1986] or Kagel, Battalio and Green [1995].

2. Bergstrom [1997] showed that evolution can increase survival success if it randomises traits.
3. I had produced the proof at the time and had announced the intended publication, but time elapsed without my

actually doing so. The invitation to give the plenary speech at this year’s meeting of the Geneva Association
was a welcome opportunity to make good on my promise, and I am grateful to Alfons Weichenrieder for finding
a photocopy of the page proofs in his files, which I could no longer find in mine.

4. Robson argued that selection would maximise the long-run average growth rate and he equated this growth rate
to the expected short-run growth rate in the sense E lnQt , assuming equal probability distributions in all periods.
In view of the subtle differences between the discrete average growth rate EQt − 1 and its time continuous
analogue E lnQt this line of argument is far from establishing a proof.

5. Such a proof can be found in Sinn ([1980], ch. IV B 1) who refers, among others, to Kelly [1956], Latane
[1957] and Breiman [1960], authors who demonstrated the virtue of the logarithmic expected utility criterion
for repeated gambling strategies with reinvested returns. Cf. also Breiman [1961] and Rubinstein [1991]. The
literature does not refer to the criterion of strict selective dominance.

6. There is also a biological literature dealing with the optimal growth of a gene pool in a stochastic environment
which uses logarithmic formulations. An extensive review of that literature is given in Sinn and Weichenrieder
[1993]. The analogies to the question of economic decision-making under risk as treated here are limited,
though. In particular, I have been unable to find proofs of the higher selective quality, let alone the selective
dominance of the expected logarithmic rule.

7. For the proof to follow it would even suffice to assume that the variance grows less than in proportion to time,
for example Var(Q A

t − Q B
t ) < δT β , β = const. <1, but this would be an unnecessary sophistication.

8. The variance of the sum of stochastically independent variables is the sum of their variances.
9. A value below one for low wealth levels as conjectured by Arrow cannot be derived, though.
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