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In this article specific hypotheses on the shape of a rational agent’s risk preference function :re 

derived from psychophysical laws. Weber’s law is used to establish the hypothesis of constant 

relative risk aversion for a myopic expected-utility maximizer. Weber’s law, Fechner’s law and a 

modified version of Koopmans’ preference functional are shown to generate a family of multi- 

period preference functionals which are either of an additive logarithmic or a multiplicative 

CobbDouglas type. This family has very appealing implications in a world of stochastic constant 

returns IO scale. For the actual decision the multiperiod optimizer exhibits constant relative risk 

aversion as does the myopic optimizer. However. with the pa*sagc of time. the degree of this rish 

aversion. in general. moves towards unity. Moreover. it is worth noting that the agent neither has 

IO rnakc the consumption decision simultaneously with ~hc xlcction of an optimal risk project nor 

need\ any information ahwt the future e?tccpt his or her own preferences. 

Suppose lrottw o(l(.otfottl;(.tls has to choose one out of ;I set of mutually 
cxclusivc probability distributions of end-of-period wealth. How then is 
the decision made? According to the widely acccptcd rationality axioms 
of van Neumann and Morgcnstern (1947) ;L rational agent behaves ils if 
maximizing expcctcd utility: with the aid of ii suitably chosen, mono- 
tonically increilsing. utility function, the probability distributions of 
end-of-period wealth are first transformed into probability distributions 
of utility and then, from these distributions, the one with the highest 
mean is selected. 

In a large body of economic literature the expected-utility rule has 
proved to be a flexible tool for modeling decision making under risk. 

l This paper is a con&e presentation of some of the ideas spelled OUI in a much broader context 

in Sinn (1980). 
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Unfortunately however. flexibility is not necessarily an advantage. It 
may as well be a sign of a lack of content. Indeed. as long as nothing is 
known about the utility function except that it is a strictly increasing. 
and perhaps concave. function, the behavioural implications of the 
expected-utility rule are quite vague. 

This article is therefore devoted to the task of establishing a hypothe- 
sis on the shape of the utility function for both a myopic decision 
maker and a multiperiod optimizer. To do this. use will be made of 
psychophysical laws which, up to now. have received little attention in 
economics. 

The psychophysical laws are revieaed in an interpretative way in 
section 2. On their basis. in section 3 the preference hypothesis itself is 
formulated. Section 4 offers a few comments on competing proposals 
regarding the shape of the utility function that have been made in the 
literature. 

2. The r&want psychophysical laws 

Thcrc arc two psychophysical laws nccdcd to establish the prcfcrcncc 
hypothesis. Our discussion starts with the law describing the functional 
relationship between a stimulus intensity r and its subjective magni- 
t1dL’ s: 

s = s(r). (1) 

An early hypothesis concerning the shape of this ‘sensation function’ is 
Fechncr’s (1860, 1877. 1888) logarithmic law. saying that 

.s=tr+hIn r, (2) 

where (1 is arbitrary since it depends on the unit [l] of r, but h is 
characteristic for a special stimulus continuum. Fechncr referred to 
Webcr’s (1834, 1846) threshold experiments which indicated that the 



smallest just noticeable increment to a stimulus intensity [2] is. within 
the relevant range, a constant fraction of the intensity level itself [3]. By 
assuming that, regardless of the intensity level. all just noticeable 
increments are subjectively equal, he was able to show that this re- 
markable constancy implies the logarithmic sensation function (2). 
Unfortunately, however, Fechner did not provide a legitimation for his 
assumption. Thus it is not surprising that his law has often been 
rejected. 

Another hypothesis which has been very popular in recent years is 
Stevens’ (1975) power law 

s = are, lY > 0. 0 > 0. 

Here (Y is meaningless for it depends on the unit of r. but 0 char- 
acterizes the stimulus type [4]. Stevens derived his law purely induc- 
tively from a great many experiments carried out at Harvard Labora- 
tory of Psychophysics. In these experiments people were asked to 
cstimatc stimulus intensities by the direct use of real number scales. 
Surprisingly. for a given contit~uun~. the ntu?rhcr-ttlcjcc.ttitlS &mates 
turned out to hc a power function of the stimulus intcnsitics. Examples 
for the continua considcrcd arc louciness, vibration. lightness. length of 
straight lines, saturation of cofour mixlures, salt concentration and 
heaviness. 

Although thcrc c:mnol hc any doubt concerning the validity of 
Stevens’ nic;~surctticnts, it is unclear whcthcr the nunibcrs pcoplc chose 
really did measure Lhc subjective magnitude or sensation of the objcc- 
tivc stimulus intensities hcing prcsentcd. As Garner ct al. (1956: 
155-157), Attneave (1962: 623-627) ami Ekntan (1964) have rightly 
pointed out, such if~terpret~ltio~i requires a strong ~~ssuIlipti~~n: namely 
that ttte subjective n~~~gnitudcs of numbers arc identical with their 
objective ones. Since this assumption is as arbitrary as Fechncr’s 
assumption that all just noticeable increments are subjcctivciy equal, we 



must conclude that number matching is in fact a cross-nzo&I/ity nmch- 

ing. where number sensation is set equal to the sensation of another 
kind of stimulus. Consequently, all we derive from Stevens’ experiments 
is a system of relationships between the underlying true sensation 
functions. which themselves are unknown. 

A variety of shapes of these true sensation functions is compatible 
with Stevens’ empirical findings. The functions may be of Stevens’ 
power type [5]; yet, as shown by Ekman (1964). they may just as well 
be of Fechner’s logarithmic type [6]. Note, though. that they cannot be 
partly of one and partly of the other type. Whenever the true sensation 
function for a particular continuum is found to belong to one of the 
two types of functions, then. provided Stevens’ empirical results are 
valid, the true sensation functions for 011 other continua of necessity 
have to belong to the same type. The reason is that a number-matching 
experiment of the kind 

would never yield the power relation Stevens observed, 
Fortunately a nicthod exists for dctcrminin, 0 the family to which the 

still unknown sensation functions belong - the method of interval or 
category estimation. t Ierc the cxpcrimcntal subject is asked to classify 
given stimuli into equidistant magnitude categories or to manipulate ;I 
set of stimulus intensities so that the distances between them swni to hc 

subjectively equal. The basic difference between interval estimation and 

the number-matchilig methods of measuring employed by Stevens is 
that. instead of comparing the number continuum with another con- 

tinuum, the experimental subject is concerned with only one con- 



tinuum: for a given kind of stimulus, the task is to compare an increase 
in stimulus intensity on a certain level with an increase in the intensity 
on another level. Hence the experimental subject is asked for precisely 
the piece of information needed to find out about the type of his 
sensation function. 

In order to be able to compare the results obtained by the method of 
interval estimation, define 

The parameter 7 is the negative elasticity of marginal sensation s’(r) 
i.e., 1 5 - [a.~‘( r)/ar][ T/s’( r)]. It measures the degree of curvature of 
the sensation function s(r) at point Y. A value of q = 0 characterizes a 
linear sensation function. a value of q > 0 a concave function and :I 
value of q < 0 a convex function. In the special cases of the power and 
the logarithmic functions. regardless of r, the measure 9 takes on a 
constant value and may hence hi’ utilized to indicate which Class 
prevails. It can easily be calculated that 

If q K 1, so that the sensation function is only modcratcly concave, or 
even linear or convex, then Stevens’ law prevails. In the special cast 
q = 1, where the sensation fLltl~ti(~rl is more curved than under Stevens’ 
law, Frchner’s law shows up. If q > I, there is a still stronger curvature 
that, strictly speaking. excludes both Stevens’ and Fcchncr’s law. but is 
obviously ncarcr to the latter than to the former. 

The first int~rv~~l-nlethod result was obtained by Plateau (1872). He 
asked painters to mix a grcy color, so that its iightncss was halfway 
between black and white, and found q = 2/3. However, Plateau was 
soon corrected by Delbocf (1873: esp. 50-101), who asked the experi- 
mental subjects to produce the grey by changing the ratio of black and 
white areas on a rotating disk. This more exact method yielded q = 1. 
Repeating Delboef’s experiment, Cuifford (1954: 199-200) derived 3 
sensation function which was even a little more curved. The value 



v = 1.15 can be calculated from his tables [7f_ Later even Stevens and 
Galanter (1957) and Stevens (1961) corroborated the tendency of these 
results. They admitted that, in comparison to number matching. the 
sensation functions observed in interval experiments show a systematic 
bias towards higher values of q, i.e., a bias towards Fechner’s law. In 
the sequel there have been a lot of further investigations [8]. The main 
result, which is a triumphal rehabiiitation of Fechner’s law. is sum- 
marized in a review article by Ekman and Sjsberg (1965: 464): ‘The 
log~~rithm~c relation between indirect interval and direct ratio [number 
matching] scales is now a ball-established fact for a great number of 
continua.’ Since, however, for (iI& of Stevens’ continua, including the 
number continuum [9]. the true sensation functions must be logarithmic 
if a logarithmic function is shown for only ~tre continuum, we have 
thus come to the first of the psychophysical laws we need for estnblish- 
ing our preference hypothesis - Fechner’s Iaw [IO]. 

The second law WC need is Wehcr’s (1 X34: IhI, 172- 173) relativity 



law [ll], which is closely related to the first law but not identical to it. 

Weber derived it as a generalization of his threshold experiments. 

However, it is also a generalization of Fechner’s law and is even 

compatible with Stevens’ law [12]. Weber’s law refers to the same 

stimuli as these laws and states that our senses are concerned not with 

absolute but with relative stimulus changes. Equal relative stimulus 

changes seem equally important, equally intensive. and are perceived as 

being equal: they are interpreted as the same information. 

We thus detect an object under strong or weak light. because the 

light intensity ratios on the retina stay constant. and also independently 

of its distance. since not the absolute magnitude of the retina picture 

but its proportions matter. We perceive a melody independently of the 

octave in which it is played. for the frequency ratios stay constant [13]. 

and independently of the musician’s distance. as only the loudness 

ratios matter. Our sensory system has no difficulty in steering our car 

through daily traffic although during its evolutionary genesis it had 

learned merely to command our comparatively poorly equipped natural 

body, and we live our luxurious lives as self-evidently as our ancestors 

Iivcd under much more modest circumstances. Moreover. how would 

Nicls Bohr have been ahlc to explain the atom structure by a planetary 

model if hc had not thought in terms of magnitude ratios‘? 

The reason for the phcnomcnon of ratio perception seems to hc that 

the information WC rcccivc from our cnvironmcnt is cncodcd in a ratio 

language: equal loudness ratios, equal light intensity ralios or equaI 

magnitude ratios do in&cd indicate equal picccs of information. Thus 

it is not surprising that in the long run of evolution our sensory system 

has learned to dccodc these pieces of information economically, namely 

by ncglccting the information about the absolute intensities and instead 

concentrating on their ratios. WC should accept this speciality of our 



perception apparatus as a matter of fact and ask only what it implies 
for the shape of the von Neumann-Morgenstern utility function. 

3. The risk preference function 

This section establishes a hypothesis in the shape of the von Neumann- 
Morgenstern function for both the myopic decision maker and the 
niultiperiod optimizer. For the former only Weber’s law is required, 
whereas for the latter reference will also be made to Fechner’s law. 

We start with the myopic model, assuming that the decision maker has 
to evaluate probability distributions of actual wealth. Wealth is either 
assumed to serve as a means of satisfaction as such or is regarded as an 
unspecified quantity index of all future consumption possibilities. Tak- 
ing into account Wcber’s relativity law, we formulate the following 

This axiom provides the psychophysical basis of our hypothesis. It 

yields a true description of reality if WCillth pcrccption runs parallel to 
the pcrccption of other psychophysical stimuli like. for instance, the 
‘length of 1 straight line’ or the ‘magnitude of a real number’. 

In orclcr to find out what the axiom implies for the shape of the 
utility function, cons&r Barr&s (1534: tsp. 260-261) problem of 
determining the maximum willingness to pay for a fult-coverage in- 
surance contract. Let U( -f, 0” > 0, denote the decision maker’s van 
Neumann-Morgensterti utility function, let (I denote the initial \seafth 
and let C‘, C 2 0, denote a random variable characterizing the loss 
distribution the decision maker faces for the period in question. In thi: 
absence of insurance, end-of-period hvealth is (I - C. The corresponding 
level of expected utility is E[U( (I - C)] where E( .) is the expectation 
(or: man-mlue) operator. Suppose now, insurance is bought at a 
premium p. Then, end-of-period wealth takes on the non-random value 
N - p and hence brings about the utility I/( u -p). The maximum 
insurance premium the decision maker is willing to pay. l~,,,.,~, is 



determined in such a way that he or she is just indifferent between 
buying insurance and staying uninsured: 

E[U(a- C>l = Nfl -P,,J. (7) 

Applying the inverse function of U, I/‘-‘. to both sides of this equation 
we have 

Pm,, = 6-l - U-'(E(U(a- Cl]). (8) 

The expression lf-‘( E[ U( CV)]} is usually called the ‘certainty equiv- 
alent’ of a probability distribution CV of end-of-period wealth. The 
certainty equivalent gives the non-random level of wealth which the 
decision maker considers equivalent with the probability distribution 
IV. Quite plausibly, therefore. (8) says that the decision maker is at 
most willing to pay an insurance premium amounting to the difference 
between initial wealth and the certainty equivalent of the end-of-period 
wealth distribution in the absence of insurance. 

Now suppose the initial wealth and also the loss distriblltion are 
changed, although without altering the distribution of the loss-wealth 
ratio C/a. Then, according to the Wcber axiom. the nature of the 
decision problem is unchanged and conscyucntly the maximum relative 
part of wealth the decision maker is willing to pay for the insurance 
contract should not change either. In other words, multiplying P,,,.,~, (I 
and C by a factor X, 0 < X f 1, WC should find the equation 

x Pmx =Xu-- V’{E[L’(Xu-XC)]}, (9) 

which requires a linear hon~ogeneity in the certainty equivalent. 
According to a theorem of A&l (1966: 151-153). the only strictly 
increasing functions U( .) satisfying this property are In NJ and yrvY, 
y + 0, and arbitrary linear transformations of them. We shall hence- 
forth call these functions the Weberfunctions. 

With the Weber functions, our argument establishes a hypothesis on 
the shape of the utility function which Pratt (1964) and Arrow (1965) 
classified as cotufunl reltrive ( proportiowl) risk ncersion and which 
Pollak (1970) called weak homogeneity. Utilizing the Pratt-Arrow mea- 



sure of relative risk aversion [14] 

where IV is a particular variate of I+‘, we can write the Weber functions 
as [lS] 

a4 = ;; “‘,)w*_.* i 
e- 1. 

&# 1. 

Instead of employing Weher’s relativity law it might be tempting to 
refer to Fechner’s logarithmic sensation law in order to establish a 
hypothesis on the shape of the von Neumann-Morgenstern function 
U( %v). Suppose the subjective magnitude of wealth is identical with the 
subjective magnitude of the numbers by which wealth is measured. and 
suppose moreover the subjective magnitude of wealth can also be 
identified with its introspective utility. Then the introspective utility- 
of-wealth function U( 1%‘) has to be log~irit~~~liic, i.e., 

(12) 

or any strictly increasing linear transformation thereof. Thus, at first 
glance, it seems that the von NcLlmann-Morgenstorn function U( b(v) is 
logarithmic, too. This, indeed, is the reasoning of Bernoulli (1738). who 
postulated a logarithmic utility-of-wealth function [ 161 (:lnticipating 

[IS] It cm hc shown lha! thsw functwns depict the same prefcrcnw structure as GI homothctic 

indifference c‘urve system in the F-IJ d~ayr:~m, if. for (nearly) arbitrarily &own distributions. o/p 

is small and conseqwnlty a qundrnlic appronimrrtiun e3n hC used. or if all distributions to hc 

cvaluaird belong IO the same Iinrnr cln.ss such that a distribution is completely described by IWO 

p~amrrcrrs only. (Herr p and o dcnotc the expcctcd value and standard deviation of the wealth 

distribution.) See Sinn (1980: ch. III A 2.2.). This shows that our hypothesis WGS already implicitly 

anticipated by Hicks (1967: 114). who regarded homothrtic indifference cwws as the ‘standard 

cast’. and by I. Fisher (1906: 408-409). who made the subjective wright of risk depend on the 

coefficient of varialion. o/p. 

1161 Bernoulli argued that a realistic utility-of-wtalth function should have the property that equal 

relative changes in wealth bring about equal ahsolute changes in utility. Although today Usrnoulli 

is famous for the expected-utility rule 8s such. it should not he ovcrlookcd that during the 

subJcstivtst discussion of the 1as1 century this argument for the logarithmic function was rcgxdfcd 

as the central pomt of his essay. SW the prcfxc of L. Fick in the 1896 edition of the German 

translation of B~rnoulli’s rtrticlc. 



Fechner by more than a hundred years) and proposed the rule 
max E[ln IV]. However. it is well known that the introspective utility 
function should not be identified with the von Neumann-Morgenstern 
utility function. for there is no reason for two persons with the same 
utility function for non-random wealth acting alike if probability 
distributions of wealth are to be evaluated [ 171. 

By referring to Weber’s law we have avoided Bernoulli’s error. Thus 
it is natural that in (11) the logarithmic function turned out to be only 
one of the possibilities. In order to clarify the difference between the 
Weber functions (11) and the subjective utility function (12). let us 
follow a proposition of Krelle (1968: 144-147). Krelle suggested that 
von Neumann-Morgenstern utility should be determined in two steps. 
In the first step a variate of wealth ti’ is transformed into subjective 
utility u(w). In the second step this subjective utility is transformed 
into von Neumann-Morgenstern utility by means of a speci’ic risk 

prefermce function s2( 10. Hence 

cl()2’)=52[u(w)]. (13) 

The shapes of U( MS) and II( bc) are determined by (1 1) and (12). Given 
these shapes, the only admissible versions of the specific risk prefcrcncc 
functions are [ 181 

Q) = 
i 

;; _ &(I -+, 
&= 1, 

EZ 1, 

or strictly increasing linear transformations thereof. 
As is well-known the curvature of the von Neumann-Morgenstern 

function, which is measured by E from (lo), determines the individual’s 

(171 Consider the vehement criticism of Alldis (1952. 1953) and the clarifying paper of Baumol 

(1958). 

11x1 In general, for u(w) = n + 8 In w. 8 > 0. (14) hccomcs 

Since the van Neumann-Morgenswrn function U( .) is defined up IO a strictly positive linear 

transformation. obviously it is only the factor 8 which has a hchavioural implicaGon in the case 

c + 1. given Ihe value of E. However. since the whole WI of possihlr van Neumann-Morgensrrrn 

functions is independent of 8. we arbitrarily WI 8 - 1. The degree of risk aversion is then only 

modeled by E. 



risk aversion in evaluating probability distributions of wealth. Accord- 
ing to Krelle’s hypothesis (13). this degree of risk aversion is traced 
back to both the curvature of U( .) and that of fi( 0). The reader may 
easily check that the subjective utility function (12) by itself implies 
E = 1, that is. some positive degree of risk aversion. It is possible that 
the specific risk aversion function is linear so that this degree of risk 
aversion is not modified. This is Bernoulli’s case which is depicted by 
the first line on the right-hand side of (14). In general. however, as 
captured by the second line in (14) the specific risk preference function 
is curved and will hence exhibit a significant influence on the evalua- 
tion of risks. 

In the general case the specific risk preference function takes on the 
particular mathematical form of the exponential function. This function 
was first suggested by Freund (1956) for the objective continuum and 
was shown by Pfanzagl (1959a: 39-41. 55-57; 1959b: 288-292) and 
Pratt (1964: 130) to be characterized by what, in the Pratt-Arrow 
terminology, is called c’onsttrnf c~hsotlrrc~ risk crcwrsion. Hence our prefer- 
ence hypothesis not only implies constant relative risk aversion on the 
objective (wealth) continuum. but also constant absolute risk aversion 
on the subjective (utility) continuum. 

In line with the Pratt-Arrow definitions. the dcgrcc of absolute risk 
aversion of the specific risk prefercncc function is - Q”( 1r)/S2’( II). 
Calculating this mcasurc for (14) we find 

E=l+ 
L?“( 11) ( i -____ 
P(u) 

(15) 

Thus. the degree of relative risk aversion (E) on the objective continuum 
is one plus the degree of absolute risk aversion (-W/Q’) on the 
subjective continuum. If the degree of absolute risk aversion on the 
subjective continuum is strictly positive. that is, if L?( .) is concave, then 
the risk aversion predetermined by the logarithmic subjective utility 
function (12) is reinforced: relative risk aversion on the objective 
continuum is above unity. If, on the other hand, the degree of absolute 
risk aversion on the subjective continuum is strictly negative, that is, if 
L?( .) is convex and risk loving on the subjective continuum prevails. 
then the risk aversion predetermined by the logarithmic subjective 
utility function (12) is weakened: relative risk aversion on the objective 
continuum is less than unity. 
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3.2. The ntultiperiod optinker 

It is unclear whether the myopic or the multistage optimizing model is a 
better description of reality, but there is no question that the latter is 
the better normative approach. Thus we attempted to show how a 
multiperiod optimizer should behave if his or her preferences were 
compatible with the psychophysical laws. 

For this task our basic assumption is that the multiperiod preference 
functional can be written in general as f19] 

f T 
E\+ 

[ 1 

\ 
Ef(C,)h~ j: I)‘( *) > 0, f’(a) > 0, A, > ovt. (16) 
r-o 

Here C~_,J( C,)A, is the deterministic multiperiod preference func- 
tional, where T is the planning horizon. C, consumption in period I, C, 
final wealth. f(a) the felicity-of-consumption function, and A, the 
felicity discount factor. In the version T= co and A, = A’, 0 c X < 1, 

this preference functi~~[~~ll was provided an axiorl~~~tic basis by Koop- 
mans (1960). It is weil known that Koopmans’ separability assumption 
responsible for the additivity is crucial. However, we follow common 
usage and accept it as a simplification [20]. If/( .) is a specific risk 
preference function which is introduced to allow for degrees of risk 
aversion other than that implied by tht: curvature of j(e), the genuine 
task of which is to model the decision maker’s intertemporal prefer- 
enccs rather than his risk prefercnccs. Our aim is now to specify this 
function $( a) and the felicity function /( *) by refcrencc to the psycho- 
physical laws described ahovc. 

The first piece of inf~~rl~i~ltion can be derived from the previous 
discussion concerning the myopic case. Suppose initial wealth w is 
replaced by a factor x rnc~isuri~ig the level of a (dc~erministic) con- 
sumption path (scj, xc:, . . . . . UC;.) which is just the multiple of a 
standard path (c:. c;, . . . , cf). Then, according to the Weber axiom, 
(16) should have the property that the decision maker, in evaluating 

[I91 For an axiomatic foundation of this prercrrncc functional see Sinn (1980: ch. IV B 2.1.1). 

(201 The additivity can be rationalized if the complementaritirs betwcrn consumption levels in the 

dlffcrcnt periods are the weaker the greater the distances between thcsc periods. for then their 

disturbing character can bc reduced by P simple lengthening of periods. This has been pointed out 

by Arrow and Kurt (1970: 1 I-12). 



gambles on x, behaves as if following the rule max E[I/( X)]. where 
U( .) exhibits constant relative risk aversion. Thus, for precisely the 
same reason as that bringing about (II), we should have 

(17) 

where E’ is the Pratt-Arrow measure of relative risk aversion char- 
acterizing the shape of c/( a). 

Unfortunately this information is insufficient to determine both I$( .) 
and j(e). for it refers to a sum effect of both functions. What we need 
is further information concerning the shape of either 1c/( a) or f( s). For 
the latter such information is indeed available. Assume that the felicity 
of consumption can be identified with the subjective magnitude of 
consumption and assume that the latter is determined by the subjective 
magnitude of the number by which consumption is measured. Then the 
felicity function ohcys Fechner’s law. A possible objection to this 
outcome is that the subjective magnitude of one period’s consumption 
cannot necessarily bc determined indcpendcntly of consumption in 
other periods. However. this possibility has already been excluded with 
the assumption of the separable Koopmans-prcfcrence functional. Thus 
WC can formulate the following 

Obviously the preference functional for deterministic multiperiod plan- 
ning is then 

i A, In c,, 
r-0 

(18) 

where we omit an additive constant and assume [21] z7,T_,X, = 1. This 

[21] As in the myopic case this assumption has no hehavioural implications and is made for 

simplicily only. Compare In. 18. 



preference functional was already mentioned by Modigliani and Brum- 
berg (1955: 396. fn. 15) in an allusion to psychophysics. It is in line 
with the logarithmic utility-of-wealth function (12) if consumption in 
each period is proportional to initial wealth. i.e.. if wealth is indeed an 
adequate quantity index of future consumption possibilities, as we had 
assumed in the myopic model. 

Now it is easy to find the specific risk preference function $( .) 
compatible with both (17) and (18). It is again the function (14) from 
the myopic case, for combining +( .) = Q( 0) and (18) is the only way to 
satisfy (17). Accordingly, the possibilities for the preference functional 

(16) turn out to be 

E(~[~~(~f)~fI}=~~~~~~‘;lt;_~.~~, 

7-O 

where the latter is derived from 

&‘= 1, 

,i 
. E’# 1. 

E(( 1 - E’)C (I --C,(L!_,,A, In(;) 
). 

09) 

For a world of stochastic constant returns to scale and under the 
assumption h, = A”, 0 < h < 1. the implications of these preference 
functionals have already been studied by Pye (1972). He showed that a 
myopic utility-of-wealth function relevant for the actual decision can be 
derived which is characterized by constant relative risk aversion, the 
degree of which changes with time. Specifically, if E, is the Pratt-Arrow 
measure of relative risk aversion relevant for the probability distribu- 
tion of wealth appearing at the time I and depending on the decision at 
f - 1, then 

E,= 1 -(l 4) iA,. 
7=, 

(20) 

Furthermore he found that the part of wealth at time f reserved for 



consumption during the following period is given by 

(71) 

Verbally the rule (20) means that relative risk aversion nears unity as 
time goes by. Thus with E’ < 1 it is possible to depict the everyday 
observation that risk aversion increases with age. 

In a study of anljther family of preference functionals Samuelson 
(1969) admitted his surprise in finding a time Nrdependence of risk 
aversion, for he had expected risk aversion to increase with age. arguing 
that the ‘chance to recoup’ is the greater the younger a person is. One 
might claim that this supposition is now rationalized by our preference 
hypothesis. However. this interpretation is incorrect, for, contrary to its 
intention, decisions taken in the youth are of greater importance than 
those taken in fate years. On the one hand. according to (21). consump- 
tion is always pr~~porti~~n~~l to wealth: on the other hand, constant 
relative risk aversion means that the relative wealth distribtlti(~n (e.g. 
determined by the portfolio structure) is chosen indcpcndcntly of the 
absofutc kveatth Ievei. Therefore. in comparison to what the situation 
would otherwise have been, ;I given pcrccntagc change in tvcalth at any 
point in time causes an equal percentage change in consumption in 
each of the following periods up to the horizon. including an equal 
percentage change in final wealth. This implics that the younger a 
person is, the more lifetime utility (IX) is affected and that, even for a 
very young person. there is no chance to recoup at all. Since according 
to (16) distributions of lifetime utility are evaluated after applying +( .) 
as a specific risk preference function, the correct interpret~~ti~~n of the 
time dependence of risk aversion is now obvious. For old persons the 
dispersion of lifetime utility is so small that the curvature of $(+) cm 

be neglected, so that risk neutrality on the subjective continuum is 
roughly the appropriate attitude. This is equivalent to saying that. for 
evaluating probability distributions of wealth, the relative risk aversion 
of old persons should be near unity. However for young persons with 
great dispersion of lifetime utility the curvature of #(a) generally 
cannot be neglected. Thus, for them, risk preference or risk aversion on 
the subjective continuum plays an important role in finding the optimal 



decision. so that relative risk aversion may differ quite substantially 
from unity. 

According to (21) our preference hypothesis implies furthermore that 
the propensity to consume out of wealth depends on the decision 
maker’s time preference and the distance of the time horizon. but not 
on present or future investment opportunities. The reason is that the 
income and the substitution effect of a change in expected returns just 
offset each other. This simplifies the actual decision enormously. for it 
is neither necessary for the decision maker to chose the actual risk 
projects simultaneously with the consumption level nor to know which 
investment opportunities will be available in future. In sum, in order to 
derive the optimal decision at any point in time the multiperiod 
optimizer needs only to know his or her o~‘n preferences and the 
ctrrrer~f opportunity set of risk projects. 

With this result the laws of Weber and Fechner provide to a certain 
extent a rehabilitation of the simplest risk theoretic model of the 
expected utility-of-wealth maximizer. This is at first glance surprising. 
but in fact not difficult to explain. On the one hand, the phenomenon 
of ratio perception scemcd to originate from the ev~)~iltion~lry optimi- 
zation process which adapted our organism to the ratio code in which 
cnvironmcntal signals arc written. On the other hand, with the assump- 
tion of stochastic returns to sonic WC made the economic decision maker 
OpCfiltt! in ii world where the rclcvant information is also formulated in 
il ratio code. Is it then still surprising that hc finds simple bch;iviour;ll 
rules for this world as well? 

Our psyct~~)pt~ysic;ll hyp~~t~~csis on the shape of the van ~cul~l;lni~- 
Morgenstcrn fuIlcti~)n U( ~6) is not the only one which has been cstab- 
lished. Thorn are others which contrast sharply with it. 

Those of Tiirnqvist (1945). Friedntan and Savage (1948) and 
Markowitz (1952) should be mentioned first. These authors have in 
common their construction of U( a) from concave and convex segments 
so that the preference can be depicted not only for insurance contracts 
but also for gambling. Yet their approach is not very satisfactory, for 
gambling contradicts the expected utility rule its such. On the one hand. 
contrary to the fundamental axiom of ordering. gambling normally 



implies that the decision maker is not only interested in the eventual 
probability distributions. but also in the way the! are generated. On the 
other hand. gamblers frequently derive their decisions from some 
mystic rules which are not compatible with the other rationality axioms 
underlying the expected-utility rule either. An argument related to the 
latter is expressed very clearly by Hicks (1962: 793). who states: 
‘ . . . gambling is relaxation. To expect consistency in gambling is futile 
for gambling is a rest from consistency.’ 

Another hypothesis, established by Arrow (1965: 28-44, 1970: 
90-120). is that relative risk aversion increases with wealth. Arrotv’s 
argument is twofold, theoretical and empirical. Concerning the former. 
he is able to show that there is an axiom system from which not only 
the expected-utility rule itself, but also a utility boundedness theorem 
stating that limW _p I/( rc) < cx) and lim,. _o U( tt*) > - CC can be de- 

rived. Then. since boundedness from below implies that relative risk 

aversion (F) falls short of unity for w -+ 0 and boundedness from ahovc 
implies that it exceeds unity for w -+ 00, he concludes that relative risk 
aversion is increasing. It is not intended to discuss here the question of 
whether Arrow’s axiom system or an alternative system, which does not 
imply the utility b~~~lndcdIlcss theorem, is the more realistic (221. For, as 
Stiglitz (1969) points out, even if the utility function were houncieti :it 
its extrcmcs it might have any shape in between. In particular suppose 

where E < I, such that risk aversion incrcascs with age. Then the utility 
function is bounded, but ncvcrthcless cannot have hchaviour31 impiica- 
tions different from those of the unbounded function ci’( N,) = M*’ ‘. 
E< 1. 

Arrow’s empirical argument is that historically the stock of money 
has grown more quickly than wealth, which, on a basis of a portfolio 
model with a risky asset and money as the only safe asset. seems to 
imply that relative risk aversion increases with wealth. This argument is 
not convincing either. Firstly, the empirical investigations quoted by 
Arrow do not clearly support his hypothesis, The fact that the stock of 
real balances grew more quickly than wealth seems to be due to the 



secularly fallen interest rates rather than to the shape of the risk 
preference function. This indeed is the result of Latank (1960) and 
Meltzer (1963), who, in contrast to the other authors mentioned by 
Arrow, install interest rates as explanatory variables in their tests and 
come to the conclusion that the hypothesis of a unitary put-rid wealth 
elasticity of money cannot be rejected. Secondly. as Stiglitz (1969). 
Shell (1972) and others remarked, money demand as such cannot easily 
be explained by a stochastic portfolio model, for in reality there are 
short-run interest-bearing assets available which clearly dominate mo- 
ney. Thirdly, even if all this were not true, the secularly risen average 
age of population can easily explain Arrow’s observation if a quite 
modest degree of risk aversion (0 < E < 1) is the standard case. for then 
relative risk aversion increases with age, even though it does not 
increase with wealth. 

5. Conclusion 

In this article two psychophysical laws were prescntcd in order to study 
their implications for risk prefercncc functions. One is Wcbcr’s rclativ- 
ity law and the other Fcchner’s law, which was show~i to bc the only 
possibility that made the number-nlatching and intcrv~rl-nlc.thc,d mca- 
surcments of psychophysics compatihlc. For the myopic expected util- 
ity-of-wealth maximizer we rcferrcd to Wcber’s law alone and derived 
the hypothesis of constant relative risk aversion. 1 Iowcvcr. for the 
multiperiod optimizer, Fechncr’s law was IIW&XI ils well. Together with 
;I modified version of Koopmans’ prefercncc functional these two laws 
imply a filmily of prcfercnce functionals which are tither of an additive 
logarithmic or a multiplicative Cobb-Douglas type. This family has very 
appealing implications in a world of stochastic constant returns to 
scale. For his actual decision the multiperiod optimizer exhibits con- 
stant relative risk aversion as the myopic optimizer dots. However, the 
degree of this risk aversion generally changes over time: regardless of its 
initial value, with the passage of time it approaches the value of unity. 
Furthermore, the consumption decision is independent of actual and 
future investment opportunities. Thus the agent neither has to make the 
consumption decision simultaneously with the selection of an optimal 
risk project nor needs any information about the future except about 
his own preferences. 
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