Risktaking, Limited Liability, and the Competition of Bank Regulators

Hans-Werner Sinn*

Limited liability and asymmetric information between an investment bank and its lenders provide an incentive for a bank to undercapitalize and finance overly risky business projects. To counter this market failure, national governments have imposed solvency constraints on banks. However, these constraints may not survive in systems competition, as systems competition is likely to suffer from the same type of information asymmetry that induced the private market failure and that brought in the government in the first place (Selection Principle). As national solvency regulation creates a positive international policy externality on foreign lenders of domestic banks, there will be an undersupply of such regulation. This may explain why Asian banks were undercapitalized and took excessive risks before the banking crisis emerged. (JEL: D8, H0)

1. Systems Competition in Banking Regulation

The theory of systems competition has dealt with numerous problems, concentrating on fiscal competition with tax rates and public expenditure affecting internationally mobile factors of production. However, countries also compete with regulatory instruments, which may or may not exert policy externalities on other countries. Very little research has been done along these lines.

This paper tries to model the competition of banking regulation, which, to the best of the author’s knowledge, has not found prior formal treatment in the literature.1 One of the main functions of banking regulation is to keep the

* This paper resembles part of a book on systems competition that will be forthcoming elsewhere (Sinn 2003). The author wishes to thank Frank Westermann and Paul Kremmel for careful research assistance, and he gratefully acknowledges useful comments by Hans Degryse, Dominique Demougin, Vesa Kannaiainen, and Ernst-Ludwig von Thadden, as well as three anonymous referees.

1 I was unable to find references to such regulatory competition in the literature. However, a referee brought a paper by Gehrig (1995) to my attention that does include a useful nontechnical discussion of this issue on pp. 253 and 254. Moreover, after the present paper came out as a CESifo working paper in November 2001, I came across a mimeographed paper by Dell’Ariccia and Marquez dated December 2001, which does contain a formal model of systems competition. That paper produces a related message,
banking risks under control in order to prevent bank lenders from incurring losses on their bank bonds and bank deposits. Deposits are often insured, but bank bonds involve the full risk of bankruptcy for savers and financial investors. To limit this risk, many countries impose tough solvency rules on their banks. This paper studies the rationale for such regulation in terms of affecting banks' lending behavior and asks the question whether national bank regulators have the right incentives to regulate optimally, i.e., whether there is an "invisible hand" in systems competition that ensures the efficiency of this type of regulatory competition.

The Asian banking crisis demonstrates clearly the need for addressing this question. Foreign holders of bank bonds went on strike when they witnessed that Thai banks were issuing excessively bad bonds, and so the Thai baht depreciated strongly. With South Korea, Malaysia, Indonesia, Taiwan, Singapore, and the Philippines the situation was no different, and the currencies of those countries soon followed similar paths, leaving a long trail of bankrupt banks behind. The Asian banking crisis propelled the Asian economies into a sharp recession in 1998, which had severe repercussions on economic growth in the rest of the world.

The Asian problems had been preceded by the savings & loan crisis in the United States and the Mexican crisis in the early 1990s. Both of these crises had a weaker impact on the world economy because they were mitigated with generous loans by the U.S. government and the IMF. However, they paved the way for the Asian disaster by making financial investors aware of the risks they were facing.

While the various banking crises had many facets that cannot be discussed here, there seems to be a common element in that the banks were undercapitalized and had taken excessive risks in the capital market. For instance, in Korea the equity asset ratio fell from 9.5% in 1990 to 6.5% in 1996, the year before the crisis began, and in Mexico the ratio fell from 6.24% in 1990 to 5.5% in 1994, the year of the crisis (OECD, 2001). There are illustrative descriptions by Corsetti, Pesenti, and Roubini (1998), Dekle and Kletzer (2001), Kane (2000), and Calomiris and Powell (2000), showing that in East Asia as well as Mexico, a substantial part of the problem had indeed been excessive risktaking and the lack of domestic bank regulation. In Korea, Taiwan, Thailand, Malaysia, and Singapore, banking regulation was fragmented between different regulatory agencies, and overall was too lenient or simply ignored in practice. In his 1998 Munich Lectures, Dornbusch (2003) argued that the Asian crisis, which had led the world into a severe recession, was the

result of financial fragility and excessive risktaking, which itself originated from a preceding liberalization of bank regulation and deliberate neglect of prudence regulation.²

Undercapitalization not only makes a bank vulnerable in a crisis, it can even trigger the crisis by inducing excessive risktaking when the bank享受s the privilege of limited liability, as all corporations do. When the equity base is low, limited liability effectively truncates the probability distributions of income among which a bank can choose and thus creates an artificial type of risk-loving behavior, which has been called a gamble for resurrection or resuscitation. There is an extensive literature analyzing this type of behavior and possible policy implications in various contexts. The references include contributions of Jensen and Meckling (1976), Sinn (1980, ch. III B, V B, and V C; 1982), Minsky (1991), Goodhart (1991, p. 15), Mishkin (1992), Rochet (1992, pp. 1157-1159), Dow (1996), Dewatripont and Tirole (1995), Gehrig (1995, 1996), Bester (1997), and Gollin, Koehl, and Rochet (1997).³

Because of the Asian banking crisis, the issue of how sound banking behavior could be assured has regained much attention in the public debate, including that between the IMF and the World Bank. Often this debate neglects the implications of the artificial incentive for risktaking, but the Basel I Accord of 1988 and the new Basel II Accord, which is currently being negotiated and is scheduled to be implemented in 2005, do reflect the concerns implied in this incentive.

The Basel Accords specify minimum equity requirements and risk assessment rules. They can be seen as reactions to the perceived failure of international systems competition in the context of banking regulation. If systems competition had functioned well, common minimum equity and risk assessment rules would not have been necessary. Instead, each country could have defined its rules unilaterally, and the international competition of such rules could then have shown which ones perform best. However, the various banking crises have created sufficiently serious doubts concerning the self-regulatory forces of international systems competition to warrant a closer scrutiny of the problem.

This paper studies the international competition of banking regulation in the context of a simple model of financial intermediation where investment banks collect funds from savers to lend them to risky enterprises.

² The macroeconomic implications are not self-evident, though. Blum and Hellwig (1999) argued that banking regulation itself tends to bring about business-cycle risks, because the solvency requirements imply particularly harsh credit constraints in a time of recession.
³ Stiglitz and Weiss (1981) and Hellwig and Bester (1987) referred to related phenomena when they explained why banks can avoid the opportunistic behavior of their clients by imposing credit constraints.
2. Lemon Bonds

A theoretical justification for the mistrust in systems competition can be found in the lemon problem. The potential lemon good that banks offer to their customers is bonds, the quality of these bonds being defined in terms of the probability that banks do not go bankrupt and the amount of loan repayment they can ensure even if they do.

The bank's repayment or survival probability depends on the riskiness of the investment projects chosen, and the loan repayment in the case of bankruptcy depends on the equity the bank owns. The more risk the bank takes and the lower its equity capital, the lower is the quality of the bonds it issues.

If bond purchasers could observe the bank's investment decisions and make a judgment on the appropriateness of its equity base, they would react to any kind of opportunistic bank behavior by requiring a sufficiently high rate of interest to compensate for the reduced quality of the bonds they bought or by not buying the bonds at all. The bank would then choose the bond quality that maximized its expected investment return and would not be able to increase its expected profit by further reducing the bond quality. However, in the presence of asymmetric information, i.e., imperfect visibility of an individual bank's risk choices, the bank might be able to get away with lowering the value of the bonds more than is useful by reducing the expected value of loan repayment without having to offer a higher rate of interest in return.

Such asymmetry in information is indeed realistic, because banking is an extremely sophisticated and complicated enterprise, making it hard even for members of a bank supervisory board to keep sight of the risks their bank incurs. The financial instruments that banks use for their business have become so sophisticated, and so much business is happening off the balance sheets, that the assumption of well-informed savers would be heroic if not absurd. It is true that savers can observe the equity base of a bank and certain other characteristics, but in order to understand what they mean, they would have to be able to monitor the banks' off-balance-sheet business and to become banking specialists. Even the close monitoring of a bank's history does not convey the necessary information, because bankruptcy is not only a rare but also a nonrepeating event. The best the bank lenders can achieve is to get some idea of the average frequency of bank failures in general and of the amounts of funds normally repaid in such events.

The knowledge of the general market situation may prevent bank lenders from being systematically expropriated by the banks, because they will require, and be able to receive, a rate of interest sufficiently high to compensate for the possibility of nonperformance. However, market knowledge does not provide the lenders with the information necessary to distinguish between good and bad banks and will therefore not be able to exclude opportunistic banking behavior. Unregulated banks may get stuck in an inefficient equilibrium, where they all choose some degree of overly risky behavior. A bank that decides to offer a safer product, i.e., a bond with a higher expected repayment value, may not be able to convey this information to its lenders and may therefore not be able to borrow at a lower rate of interest than its competitors can. Offering a safer bond would just increase its expected repayment and lower its expected profit.

To help the bank lenders make better investment decisions, private rating agencies such as Moody's or Standard & Poor's have developed systems that rank banks by the estimated safety of their business. However, as the savings & loan debacle, the Asian crisis, and the recent failure to detect the problems of Enron and WorldCom have demonstrated, these agencies are far from perfect, unable to provide the market with timely ranking revisions. Only in retrospect did the investors become aware of the true riskiness of their engagements; the rating agencies had not been able to warn them in time. The crises showed that there was still substantial scope for opportunistic behavior behind the public's back.

To protect bank lenders, often ordinary people who have entrusted their lifetime savings to the banks, many governments have imposed solvency regulations on banks or insisted on tough self-regulation rules imposed by national banking associations. Some countries, such as Switzerland, Germany, and (after the Asian crisis) Japan, have imposed very strict regulations, such as minimum legal reserves and extensive creditor rights; others, such as France, the United Kingdom, and the United States, have placed more confidence in self-regulation.

Another justification for tough banking regulation can be found in the time-consistency problem first studied by Jensen and Meckling (1976). Banks make long-term lending con-
Whereas the national regulation decisions were normally designed in periods where the banks’ lenders were predominantly nationals, globalization has changed the situation substantially. International banking competition has become fierce, possible acquisitions by competitors have become a constant threat to banking managers, and cheap international refinancing has become the clue for banking success in all countries. Banks have internationalized faster than other institutions and firms, and in many countries the share of foreigners among their lenders has increased substantially over recent years. In Germany, for example, this share doubled in the sixteen years from 1980 through 1996. Figure 1 gives an overview of the situation prevailing among a selection of OECD countries in 1996.

Figure 1
Share of Liabilities to Nonresidents in 1996

The increasing fraction of foreigners among the banks’ lenders may change the national governments’ attitudes towards banking regulation, since part of the benefits from banking regulation spills over to foreigners while domestic banks may suffer from the constraints imposed upon them. That is the theme of this paper, and we will see what theoretical basis can be laid.

3. Banking with Unlimited Liability: The Basic Model

To investigate the information asymmetry between a bank and its lenders formally, a model of a market for bank intermediation is considered. The model focuses on opportunistic behavior by the banks and abstracts from such behavior by the banks’ borrowers. For didactic purposes, the analysis begins with a simplified version of the model without limited liability, and then turns to limited liability in a closed-economy context. The main focus is on the analysis of regulatory competition, which follows thereafter.

There is a capital market with four types of assets:

(i) Safe assets with a fixed rate of return \(s - 1 \), such as government saving bonds.
(ii) Bonds issued by banks, which promise, but will not necessarily pay, a rate of return \(r - 1 \).
(iii) Business loans, which pay a target rate of return \(q - 1 \) if the business is successful, which happens with probability \(p, 1 - p > 0 \); but pay no return and incur the total loss of capital if the business fails.
(iv) Bank shares.

In the model, \(s \) is exogenously given, but \(r \) and \(q \) will be explained endogenously.

Private households can directly invest in the first and second types of assets, but can channel their funds into the third type only indirectly, via the intermediation of private banks, because there are prohibitive transaction costs involved in lending directly. Banks are “delegated monitors” for business investments. Only they possess the necessary information to monitor business firms and the power to enforce efficient behavior of these firms, but the banks themselves may not behave efficiently. The model concentrates on investment banking, abstracting from deposit insurance. There are a fixed number of competitive banks, which face an inelastic demand for funds, \(F \).

Nevertheless, this model is similar in spirit to an inspiring model due to Bester (1997), who studied opportunistic behavior of a bank’s borrowers.

Formally, the bonds introduced above can also be interpreted as interest-bearing deposits. Note, however, that while deposit insurance is common among OECD countries, none has insurance for bank bonds and other financial instruments that the banks use.
by private firms.11 The target rate-of-return factor q can be chosen by the bank by controlling the type of business investment it wants to finance. There are opportunities with high levels of q and low success probabilities p, and vice versa. In general we assume that the set of efficient return-probability tuples available to the bank can be described by a function $p(q)$, $p' < 0$.12 All agents are risk-neutral, and banks do not diversify their lending risks; they specialize in lending to a selected client or clients whose risks are perfectly correlated. The German Haushausbank, which concentrates its lending on only one or a few business firms, may come closest to this ideal. The risks among the clients of different banks may or may not be uncorrelated, but each of the identical competitive banks faces the same choice set of attainable probability distributions.

If the risks among the various types of business firms are uncorrelated, the lenders' risk neutrality can be justified with the assumption that they diversify their risks among the various bank bonds, and the banks' risk neutrality (with regard to the gross wealth distributions it faces) can be explained by their owners' perfect diversification among bank shares and other assets. However, as long as the assumption of risk neutrality is accepted as a simplifying device, it may also be assumed that the risks are correlated. The assumption that banks specialize in just one firm or one class of perfectly correlated risks can, in turn, be justified by prohibitive information costs or the fact that the artificial incentives for risk-taking that result from limited liability are analyzed in the following section are operative.13 However, this assumption is necessary to collect their funds. Deposits and deposit insurance are essential ingredients of savings banks, but otherwise they are of limited importance.

11 As the analysis focuses on distortions in risk taking rather than investment decisions, F is, for simplicity, taken as given. Only the risksiness of the investment is considered a choice variable.

12 There are various possible interpretations of this function: (i) There are different potential firms, each with a different project (or one firm with different potential projects), characterized by p and q. The function $p(q)$ characterizes the true social efficiency frontier. The bank picks the firm it likes (or agrees with the managers of the firm which one to pick). (ii) The bank contracts with a particular firm whose behavior cannot be monitored, and $p(q)$ is a reduced form of behavioral response function reflecting the Stiglitz-Weiss relationship. This second interpretation would be compatible with the positive results derived below, but the welfare results would have to be interpreted with more caution. The focus in this paper is on the information asymmetry between a bank and its lenders rather than between a bank and its borrowers.

13 The non-competition assumption has the advantage of making it possible to model a simple risk-return trade-off and is made for the sake of analytical simplification only. The main thrust of the analysis to follow is independent of this simplification as long as the tails of the probability distributions involved extend to the negative equity range so that limited liability becomes effective. See Sinn (1980) for an extensive study of $\mu - \sigma$ choice problems with limited liability and linear distribution classes. Limited liability implies that the indifference curves in $\mu - \sigma$ space are concave when the true degree of risk.

a simplification only, to prevent us from considering risk choices among more complicated probability distributions. None of the messages of this paper hinges on this simplification. Consider first the case of unlimited liability, where banks will always keep their promises. Here, bank bonds are safe assets, and arbitrage in the capital market assures that they generate the same return as government bonds:

$$s = r.$$

(1)

Consider a representative bank. The expected profit of the bank choosing a project with a target return of size q is

$$E \pi = (p(q) q - r) \cdot F.$$

(2)

The optimal risk strategy maximizes the expected return from business lending. It is given by the return-probability tuple at which the marginal expected revenue from business lending is zero:

$$p'(q) q + p(q) = 0.$$

(3)

It is assumed that, in the optimum, $E \pi > 0$.

4. Lemon Banking

In the model set up thus far, bonds are not lemon goods, because unlimited bank liability ensures that the lender gets exactly what the bank promises. However, unlimited liability is far from being realistic, given that no one can lose more than he has. If the bank’s equity capital is exhausted, bank lenders will not be able to collect the promised return, and they may even lose part of the loan capital that they provided.

Let C be the equity capital the bank owns at the beginning of the period, and assume it is required by a regulatory agency to invest this capital at the safe rate of return $s = 1$, and uses the proceeds from bond issues, F, for the business investment it finances.14 If the business project is successful, the bank is assured of a positive profit. If it is unsuccessful, the bank’s equity capital is reduced to $C - F$. The optimal investment in risky assets exceeds its equity capital. Concave indifference curves clearly imply that the bank prefers not to diversify its risks.

14 It would be possible to allow the firm to invest part of F, say Δ, $\Delta \geq 0$, in the safe asset without changing any of the results, because the firm would always choose $\Delta = 0$. Consider the two cases where (i) the limited-liability constraint is not binding and where (ii) it is binding. In case (i), $\Delta = 0$ follows from the assumption made in the text, that, in the optimum, $E \pi = (p(q) q - r) F > 0$. In case (ii), when the limited-liability constraint is binding, the bank will value $C + F$ and $C - F = C + (q - r) F - F$. Thus $\Delta = 0$ is optimal if $q > s$. To show that this condition is satisfied, note first that if case (i) with $E \pi > 0$ prevails, the assumption $p > 0$ and equation (1) imply that $q > s$. Anticipating the result yet to be derived that limiting liability implies an even higher value of q (Proposition 1), it follows a fortiori that $q > s$ and that $\Delta = 0$.}
will be able to service the bonds it issued, and its value will be \(s \cdot C + (q - r)F \). If, on the other hand, the business project fails, the value of the bank will be \(sC - rF \) or 0, whichever is higher. Multiplying the possible states of bank value with their probabilities and subtracting the end-of-period value of the initial equity capital gives the following expression for the representative bank's expected profit:

\[
E\pi = p(q) \cdot (sC + (q - r)F) + (1 - p(q)) \cdot \max(sC - rF, 0) - sC. \tag{4}
\]

If the bank's equity capital exceeds its repayment obligation \((sC > rF)\), this expression coincides with (2). The limited-liability constraint is not binding, and the same type of equilibrium emerges as was discussed above. If, on the other hand, the bank's equity is insufficient to satisfy its repayment obligation \((sC < rF)\), limited liability creates an artificial risk preference that may change the bank's behavior. This is the case on which the subsequent analysis will concentrate.

The rate of return promised to lenders may not be given, but may depend on the actions of the bank. Lenders will know from their general market observation that the repayment promise of banks cannot be taken for granted. Thus the promised rate of return on bank bonds will have to be sufficiently high to compensate for the reduced payment in the case of bankruptcy. Risk neutrality implies that a capital-market equilibrium is characterized by the equality between the expected repayment of a bank bond and the repayment of a safe asset. As the repayment of a bond is equal to the bank's promise in the case of success and equal to its equity capital in the case of failure, the equilibrium condition can be taken to be

\[
p(q) \cdot rF + (1 - p(q)) \cdot sC = sF \quad \text{for} \quad rF \geq sC. \tag{5}
\]

The important question is, whether and to what extent the constraint imposed by equation (5) will affect the behavior of banks. The answer depends on which of two possible interpretations of this equation, a narrow one or a wide one, is correct. The narrow one is that equation (5) applies to an individual bank's actions and shows how the lender's required rate of interest reacts to the bank's policy choices. The wide interpretation is that equation (5) is only an equilibrium condition, determining the market rate of interest paid by banks without implying that the single bank can affect this rate through its own policy decisions.

If the narrow interpretation is true, limited liability will have no behavioral implications relative to the model set up in the previous section. Inserting equation (5) into (4) gives again equation (2) when account is taken of (1), and this is true even if there is limited liability. As the bank is unable to manipulate the expected rate of interest paid to its lenders, this rate being equal to the one on safe assets, \(s - 1 \), it will still aim at maximizing the expected return from business lending, as is ensured by marginal condition (3).

However, for the reasons explained in section 2, the extent of household information on the bank's actions may not go far enough to justify the narrow interpretation. If bank lenders are unable to monitor the individual bank's actions ex ante and are therefore unable to anticipate these actions with an appropriate interest demand, the bank's decision problem is no longer compatible with maximization of equation (2), because the bank does not have to alter the promised rate of return, \(r - 1 \), when it changes its risk policy, given that the other banks stick to whatever policies they choose. To understand the bank's incentives in the case of constant \(r \) and the limited-liability constraint being operative, rewrite equation (4) in the form

\[
E\pi = (p(q) \cdot q - r) F + (rF - sC)(1 - p(q)) \quad \text{for} \quad rF \geq sC \tag{6}
\]

and compare with equation (2). The first term on the right-hand side is the expected profit provided that the bank services its bonds under all circumstances. However, the second term measures the advantage resulting from the fact that the bank does not fully service its bonds under all circumstances but only in the case of survival. In the case of bankruptcy the bank can avoid that part of the promised loan repayment that exceeds its equity capital, \(rF - sC \), and this advantage contributes to the expected profit to the extent of the probability that it happens, \(1 - p(q) \). There is a negative marginal externality imposed on the bank's lenders, which may distort the bank's decisions.

The single bank will try to maximize (6) for a given \(r \), notwithstanding the fact that \(r \) is determined by the equilibrium condition (5). The bank's choice variables are the target return in the case of success, \(q \) [including the corresponding success probability \(p(q) \)] and the amount of equity capital, \(C \). Assuming that equity capital is constrained from below by a solvency requirement imposed by a regulator such that \(C \geq \varepsilon \geq 0 \), the Lagrangian of the bank's decision problem can be written as

\[
L = (p(q) \cdot q - r) F + (rF - sC)(1 - p(q)) + \lambda(C - \varepsilon) \quad \text{for} \quad rF \geq sC,
\]

where \(\lambda \) is the Kuhn–Tucker multiplier. The resulting optimality conditions are

\[
p'(q)F + p(q)F - p(q)(rF - sC) = 0 \quad \text{for} \quad rF \geq sC, \tag{7}
\]

\[
\lambda = s(1 - p(q)), \tag{8}
\]

and

\[
\lambda \cdot (C - \varepsilon) = 0. \tag{9}
\]

A comparison between optimality conditions (3) and (7) reveals that the bank's risk choices are indeed distorted. The first two terms in (7) give the marginal expected revenue from seeking a higher rate of return. With
unlimited liability they sum to zero, since the bank goes to the point where the increase in the target rate of return from business investment is outweighed by the corresponding reduction in the probability of success. With limited liability this policy is no longer optimal, since increasing the target rate of return has the additional advantage that the state of nature where the lenders will have to satisfy themselves with the bank's equity capital, \(sC \), rather than the promised repayment \(rF \), becomes more probable, the marginal increase in the probability being measured by \(-p'(q)\).

The bank's optimum now lies beyond the point of maximum expected revenue from business lending, because there is a negative marginal externality it can impose on its lenders by reducing the probability of success. Given the expected return from business investment, a high target return that accrues with a low probability is better than a low target return with a high probability, because the expected loan repayment is lower. Thus, choosing a lower survival probability and a higher target return may be better for the bank, even if this implies a somewhat lower expected return to business lending. This is the gamble for resurrection analyzed in the literature cited in the introduction and analyzed in great detail under the term BLOOS rule (you cannot get blood out of a stone) in Sinn (1980).

Figure 2 illustrates the distortion in the bank's decision problem. The upper of the two downward-sloping curves is the graph of the function \(p(q) \), i.e., the probability of successful business lending as a function of the target return factor; and the lower one shows the bank's marginal expected revenue from business lending. Formally, the relationship between the two curves is similar to that between a demand curve and a marginal revenue curve, but of course, this is nothing but a formal similarity. The point of maximum expected revenue is where the expected marginal revenue curve cuts the abscissa, \(A \), but the bank's optimum is where the expected marginal revenue is sufficiently negative to compensate for the advantage of being able to impose a negative marginal externality on its lenders. In the diagram this marginal externality is measured by the distance between the abscissa and the horizontal line below it. Thus the point of intersection between this line and the marginal expected revenue curve, \(C \), is the firm's optimum in the case where the limited-liability constraint is operative.

While there is an interior optimum for the bank's risk choice, there is a corner solution for its equity capital. As equation (9) reveals that \(\lambda \) is positive, it follows from (9) that

\[
C = s;
\]

i.e., the bank will choose as little equity as possible for its operations. The higher the equity capital, the higher is the payment to lenders in the case of failure, and the higher is the expected refinancing cost. Clearly, therefore, the bank prefers to operate with as little equity as is allowed and takes only the quantity it must.

The result contradicts the Modigliani–Miller theorem, according to which a firm's debt–equity choice is indeterminate.\(^5\) However, that theorem was derived by abstracting from limited liability and asymmetric information. In the present context, equity capital is more expensive than debt capital for the banking firm, since an increase of equity capital increases the payments to lenders in the case of bankruptcy, which ignorant lenders will not honor with a lower interest requirement.\(^6\) From a practical perspective, the fact that equity capital is much more expensive than debt capital is obvious for any banking business. Bank managers are eager to spare equity capital whenever they can and to run their banks with as little equity as possible, certainly far less than necessary to be able to cover all the risks they incur.

The result of this section can be summarized as follows.

\(^6\) Relative to the true social opportunity cost, equity capital is too expensive in this model, and debt capital is too cheap. In an extended model with deposit insurance whose premium is not adjusted to individual behavior, debt capital may a fortiori be too cheap due to the externality imposed on other insurers.
Proposition 1: The combination of limited liability and incomplete information of its lenders induces the banks to minimize their equity volumes and to choose riskier strategies of business lending than in the case of unlimited liability. Banks choose to offer their lenders lemon bonds, which will not be serviced with certainty.

5. Welfare Implications and Optimal Regulation

From a social perspective, the bank’s risk-taking is excessive. It is true that risk-taking often is productive in the sense that it enables people to make use of the opportunities nature offers them. Risk-consolidating devices such as insurance and stock markets can be seen as augmenting risk as one of the economy’s most important factors of production and to have significant growth effects. However, in the present context, risk-taking may be excessive because it is induced by an externality that the bank imposes on its lenders rather than consolidating activity.

Assume that \(s \) measures the true social opportunity cost of bank lending, that \(q \) and \(\theta \) denote the true social returns from business lending in the cases of success and failure, and that the probability \(p \) is both the subjective and the objective probability of success. Then welfare \(W \) is given by the difference between the expected social return of business lending and the alternative return that savers could have earned had they invested their funds in the capital market:

\[
W = (p'(q)q - s) \cdot F. \tag{11}
\]

The optimal amount of risk-taking (as measured by the target return) and the optimal success probability follow from the first-order condition for a maximum of (11),

\[
p'(q)q + p(q) = 0. \tag{12}
\]

Obviously, it coincides with the bank’s optimum in the case of unlimited liability, as defined by equation (3).

The social optimum is given by point A in Figure 2. The welfare loss from choosing point C instead of A is given by the shaded area ABC between the marginal-expected-revenue curve and the abscissa. The area shows by how much the expected revenue from business lending declines due to the banks’ attempts to reduce the expected loan repayment to its lenders.

Interestingly enough, the banks burn their own fingers with this policy, because it is they alone who bear the welfare loss resulting from their opportunistic behavior. Because of (5), lenders will be able to receive a fair compensation for the bankruptcy risk in market equilibrium. The welfare loss shows up exclusively in terms of a reduction of bank profits and hence a corresponding decline in the value of banking firms. Households suffer no loss although they buy the lemon bonds.

The irony of the result can be seen most clearly in Figure 2. Suppose, for a moment, all banks choose point A. By moving from A to C, the single bank can increase its profit by an amount given by the area ACD, because it reduces its expected loan repayment to its lenders by an amount equal to the area ABCD, which is more than the decline in the expected return from business investment, ABC. However, if all banks behave that way, different lending conditions will emerge where the banks’ lenders will be able to fully avoid a disadvantage. If all banks operate at point C instead of A, they are unable to reduce the expected loan repayment, and hence their profits fall by the area ABC. This can be summarized as follows.

Proposition 2: The risk-taking resulting from limited liability and asymmetric information is too large from a welfare perspective. The welfare loss will be borne by the banks alone and result in reduced banking profits.

The remedy to cure the market failure is some sort of collective action that imposes constraints on the single bank’s behavior. This could be an agreement among the banks, or it could be banking laws that exclude misbehavior. The national solutions differ in this regard. There are a multitude of constraints that the countries impose on their banks, but the imposition of bank solvency rules in the sense of setting minimum equity requirements seems to be common to all major countries.

The model set up above shows that this is indeed a useful approach, since it includes \(\varepsilon \) as the minimum amount of equity capital required by a bank regulator. From equations (7) and (10) it follows that it is possible to reduce opportunistic behavior by increasing this minimum. The higher \(\varepsilon \), the lower is the marginal externality distorting the bank’s behavior, and the lower is the extent of risk-taking as represented by the size of the target return:

\[
\frac{dq}{de} = -\frac{p'(q)}{d^2E\pi/dq^2} < 0 \quad \text{for} \quad rF \geq \varepsilon. \tag{13}
\]

Here

\[
\frac{d^2E\pi}{dq^2} = 2p'(q)F + p''(q) ((q - r)F + \varepsilon) < 0 \quad \text{for} \quad rF \geq \varepsilon
\]

is the second-order condition for the bank’s optimization problem, which is assumed to be satisfied. It is even possible to induce firms to behave optimally. If \(\varepsilon \geq rF \), it follows from (7) that there is no distortion at all, because the

\[17\] Sinn (1986).
equity capital is large enough to prevent the limited-liability constraint from becoming operative. This can be summarized as follows.

Proposition 3 With the imposition of minimum equity requirements it is possible to reduce and even avoid the welfare loss from excessive risk-taking that is implied by limited liability.

6. The Competition of Banking Regulation

While it is in the national, and even the national banks', interest to impose minimum equity requirements when all competing banks are governed by them, things may be different, of course, in an international context. Although the banks themselves have tended to lobby for strict national banking rules, their interest in such rules has been fading away with the rapid globalization of recent years. The argument used by banking representatives is that the unilateral imposition of tough banking rules is unfair, since these rules increase the national cost of the banking business and imply a competitive disadvantage relative to the rest of the world.

The argument would make little sense if it could be assumed that international lenders reward tough national banking laws by sufficing themselves with lower rates of interest, knowing that the banks they buy have a higher quality than those of other countries. But obviously, the banking representatives do not believe that international lenders behave this way. While it is true that refinancing rates differ to some degree according to the assessment of the rating agencies, there is the widespread fear that the observable differences by no means reflect the true differences of the risks imposed on lenders. The bank lobbyists' pressure on national governments not to impose stricter banking rules than do competing countries is therefore overwhelming, and in fact the pressure goes in the direction of national liberalization.

The Asian banking crisis, which in the opinion of many observers resulted from financial fragility and could have been prevented with stricter banking laws, may have been the result of a competition of laxity in regulation.

Suppose for a moment that this view were wrong and that bank lenders were able to assess the meaning of national banking laws even though they are unable to monitor a single bank's risk-taking behavior. In this case, lenders from at home and abroad would be able to infer from the national banking law which target rate of return and which success probability the domestic banks will choose, and they would use equation (5) to determine the rate of interest they require from the banks of a particular country. The national government would then likely take the behavior of savers and banks into account when choosing its banking law. As national and international savers would receive an expected rate of return equal to the given world market rate of interest for safe assets, $s - 1$, the government's policy choice would be irrelevant for households, but would affect the national banks' profit. National welfare maximization would therefore be identical with the profit maximization of a single bank with well-informed lenders. Integrating (5) into (6) would result in equation (11), and obviously it would be in the national government's interest to induce the domestic banks, by way of setting s, to choose a target return that satisfies (12) and to maximize the expected return from business lending.

Though logically possible, this scenario is not really convincing, since it contradicts the Selection Principle. The Selection Principle says that it is unlikely that systems competition will work, since governments have concentrated on those economic activities where markets have failed. Reintroducing the markets through the back door of systems competition is likely to bring about the same kind of market failure that induced the governments to become active in the first place. In the present context, the Selection Principle could imply not only that international bank lenders are unable to assess a single bank's choices under risk, but also that they cannot easily distinguish between the various national banking laws. There are currently 205 countries in the world, and there are nearly as many banking laws. To assume that savers know what they will get if they entrust their money to a bank in Fiji Islands, Madagascar, or Turkmenistan would be sanguine to say the least.

Thus, the situation of a national government may be similar to that of a single bank that faces ignorant lenders. If the government imposes a tough banking law that prevents or reduces opportunistic banking behavior, it will not be able to convince lenders of the better quality of national bank bonds and will therefore not be able to reduce the rate of interest that the lenders request. The government will therefore have to take into account that the imposition of a minimum equity requirement makes domestic banks worse
off and their lenders better off. If it were equally interested in both bank profits and the well-being of lenders, it would impose an equity requirement sufficient to satisfy the closed-economy welfare maximum as defined by (12). However, given that many lenders come from abroad, it certainly is not that impartial.

Being elected by domestic residents, the domestic government will only take their situation into account and neglect foreigners, thus imposing a policy externality on other countries. In principle, there can be foreign bank owners and foreign lenders. Thus there may be two types of policy externality. The first one results from asymmetric information and is inflicted on foreign bondholders; it is basically the lemon externality analyzed in the context of the introductory banking model, although it now results from the national regulatory choice. The other one results from a sequencing or time-inconsistency effect similar to the one analyzed by Jensen and Meckling (1976). It is inflicted on the bank's foreign shareholders who bought the shares knowing that they would have to bear the consequences of subsequent policy changes without being able to require a differential compensation. The asymmetry among these policy externalities reflects the fact that bank securities will be revolved regularly while shares are eternal contracts. Bank bonds are therefore assumed to be bought after, or simultaneously with, the government regulation decision, and shares are assumed to be bought before.

Let \(\alpha \) be the share of domestic residents among the people lending to domestic banks, and \(\beta \) the share of the domestic banks owned by domestic residents. Using the expected utility of bank lenders,

\[
EU = rF + (1 - p)s - sF \quad \text{for} \quad RF \geq se,
\]

and, from (4), the expected profit,

\[
E\pi = p(r - F) - (1 - p)s \quad \text{for} \quad RF \geq se,
\]

the national welfare in the open economy can be written as

\[
W = \alpha EU + \beta E\pi.
\]

The competitive government will try to maximize \(W \) by choosing its policy parameter \(e \) (the required minimum equity) appropriately. The government knows from (4) that a marginal variation of \(e \) will affect the market outcome when \(se \leq RF \) but not when \(se > RF \). Taking account of the national banks' profit-maximizing reaction to a change in \(e \) as given by (13), the government calculates the derivative of national welfare with regard to its policy parameter:

\[
\frac{dW}{de} = (\alpha - \beta)(1 - p)s + \alpha \left. \frac{dq}{de} \right|_{(13)} \left[\frac{p'(q)(rF - se)}{\alpha \frac{dq}{de}} \right].
\]

which simplifies to

\[
\frac{dW}{de} = (\alpha - \beta)(1 - p)s + \alpha \left. \frac{dq}{de} \right|_{(13)} p'(q)(rF - se),
\]

since \(dE\pi/dq = 0 \) will hold in the bank's optimum as defined by (7)–(9).

Equation (14) shows that the sign of the derivative of national welfare with regard to the required minimum equity depends on two terms. The first one represents the redistribution from banks to lenders that is brought about by a marginal increase in the equity requirement, given the bankruptcy probability \(1 - p \). If the share of domestic lenders exceeds the share of domestic bank owners \((\alpha > \beta) \), this welfare effect will be positive, but it is negative if the share of domestic bank owners is larger, i.e., \(\alpha < \beta \). The second term reflects the fact that a higher equity requirement induces the banks to take fewer risks, i.e., to reduce the target return \(q \) and the corresponding bankruptcy probability \(1 - p \). This helps the domestic lenders to the extent that the banks' equity capital falls short of the promised loan repayment \((se < rF) \) and to the extent that there are such lenders as measured by \(\alpha \). In principle, banks are hurt by a similar effect, but, at the margin, and in the banks' optimum, the disadvantage is exactly outweighed by the increase in the expected return from business lending. So only the effect on lenders has a net impact on national welfare.

The overall impact on national welfare of an increase of \(e \) is ambiguous, depending on the factors mentioned. Consider a few special cases, which all refer to the range where the limited-liability constraint is operative, i.e., \(0 \leq e \leq RF/s \).

(i) There are no domestic lenders and no foreign bank owners:

\[
\alpha = 0, \beta = 1 \Rightarrow \frac{dW}{de} = (1 - p)s < 0 \Rightarrow e_{opt} = 0.
\]

The competitive government does not impose any equity requirements on banking firms.

(ii) There are only domestic lenders and only foreign bank owners:

\[
\alpha = 1, \beta = 0 \Rightarrow \frac{dW}{de} = (1 - p)s + \left. \frac{dq}{de} \right|_{(13)} p'(q)(rF - se) > 0
\]

\[
\Rightarrow e_{opt} \geq \frac{RF}{s}.
\]

The competitive government imposes an equity requirement large enough so that the banks can always keep their repayment promises.

(iii) Both domestic resident shares are positive, but the share of domestic lenders is at least as large as that of domestic bank owners. In this case, the first term in (14) is nonnegative and the second is strictly positive as long as
It follows that
\[
\alpha \geq \beta > 0 \Rightarrow \frac{dW}{de} > 0 \quad \text{for} \quad \frac{rF}{s} + \varepsilon_{opt} = \frac{rF}{s}.
\]

Once again it is optimal for the national government to impose an equity requirement large enough so that the banks will be able to repay their loans even in the case of bankruptcy.

(iv) Suppose finally that the share of domestic lenders is positive, smaller than the share of domestic bank owners, and large enough to make sure that \(\alpha_0 \beta > 0 \Rightarrow \frac{dW}{de} > 0\) when \(\varepsilon = 0\). This is the case of an interior solution, because \(dW/ds > 0\) when \(\varepsilon = 0\) and \(dW/ds < 0\) when \(\varepsilon = rF/s\). From the first-order condition \(dW/ds = 0\) we get, after a few manipulations,

\[
0 < \alpha < \beta \Rightarrow \varepsilon_{opt} = \frac{rF}{s} \left(\frac{\beta}{\alpha} - 1 \right) \frac{1 - p}{p' q} \tag{13}, \quad \text{where} \quad 0 < \varepsilon_{opt} < rF/s.
\]

The national government imposes some regulation on the banks, but remains nevertheless too lax to completely prevent the limited-liability constraint from becoming operative and inducing banks to take more risks than in the case of informed lenders or unlimited liability.

It is not entirely clear which of these cases prevails most frequently in reality. However, it seems that the cases where banks are predominantly owned by nationals and borrow funds worldwide are particularly relevant. While comparative international statistics are not available, the example of Germany confirms this impression. Foreigners possess only a little more than 3% of the existing equity capital of German financial institutions, but they hold 17% of the German banks' outstanding bonds and liabilities (see Figure 1).

When bank bonds are more widely distributed internationally than bank shares, systems competition may be described by the interior solution of case (iv) or may even be close to case (i), so that a corner solution with \(\varepsilon = 0\) prevails. Both cases characterize lax regulatory behavior of national authorities. In fact, the regulation will be too lax, for it is clear that the national regulatory optimum for the closed economy that results from \(\varepsilon = rF/s\) and was characterized with (12) is also the optimum for the whole world.

Proposition 4 International competition among bank regulators will not, in general, be efficient when regulators maximize national welfare, lenders are unable to monitor bank behavior, and there are foreigners among the lenders and/or

21 According to the Bundesbank, foreigners hold Euro 9 billion of equity and direct participations. This is 3.2% of the total stock of equity reported by the OECD.

7. The Basel Committee and EU on the Right Track

You cannot get blood out of a stone. This wisdom explains why decisionmaking under risk is often distorted in the direction of excessive risktaking when...
decisionmakers face possible losses, whose size exceeds their wealth or that part of their wealth that will be made liable for compensation. A bank's loan repayment liability is an example of this. When banks can choose between high target returns in business lending that occur with a low probability and low ones that occur with a high probability, they may prefer the high target returns even though a lower expected return results. The reason for this type of risk preference is that a higher probability of bankruptcy means a higher probability that ignorant lenders who are unable to monitor the bank's actions will not be able to collect the promised repayment. Lenders buy lemon goods, and banks enjoy lower financing costs.

To avoid a market for lemon bonds, national governments usually impose solvency constraints on domestic banks. However, in the process of globalization, where an increasing fraction of the banks' assets come from abroad, the incentive for the national governments to impose tough solvency constraints diminishes, since part of the benefits of such constraints accrue to foreigners while a comparatively large fraction of the resulting increase in banking costs is borne by domestic residents. Thus there is the risk that systems competition will in fact be a competition of laxity where the problem of lemon bonds, which brought in the national governments in the first place, reappears on the international level.

In such a situation, an international harmonization of solvency requirements seems appropriate. As mentioned in the introduction, more than a decade ago, the Basel Committee on Banking Supervision (1988) introduced its capital accord known as Basel I. Since then, the business of banking, risk management practices, supervisory approaches, and financial markets have undergone significant transformation, and many of the old provisions have proved to be no longer adequate. Thus, in June 1999, the Basel Committee on Banking Supervision issued a proposal for a new bank capital adequacy framework, Basel II, to replace Basel I. At this writing, the consultation process is still under way, and it is expected that the new accord will be applicable not before the year 2005.22

The rationale for the Basel II Accord can be summarized as aiming at more flexibility and more risk sensitivity with regard to individual loans given out to private business. Banks have more choices, but they have to evaluate their borrowers more carefully and to underlay each individual loan with a specific amount of equity, depending on the risk class to which the borrower belongs. There is more emphasis on the combination of effective bank-level management, market discipline, and supervision, in contrast to the focus on the single risk measure that was used in Basel I. Basel II intends to provide approaches that are both more comprehensive and more sensitive to risks than Basel I, while maintaining the overall minimum equity requirement of an 8% ratio of equity capital to risk-weighted assets. Unlike before, however, external credit assessments will be used to properly evaluate the true risk of business lending.

Basel II also aims at bolstering market discipline through enhanced disclosure by banks. Effective disclosure is essential to ensure that market participants can better understand banks' risk profiles and the adequacy of their capital positions. It reduces the lemon problem discussed in this section by informing lenders about the true risks they incur, thus helping systems competition to function better than it otherwise would do. However, the authors of Basel II certainly do not believe in a liberal approach where disclosure is all that is needed to avoid the asymmetric information among lenders and regulatory authorities that is the cause of the welfare loss resulting from systems competition.

The review of Basel I complements a review already underway of EU legislation on bank capital requirements to shape a new EU capital adequacy framework. The revised EU bank capital legislation is supposed to replace the existing legislation on capital requirements, which basically has been in place since 1988.23 The aim of the review is to ensure that European banks and investment firms are able to respond quickly to market changes and to guarantee both financial stability and the smooth functioning of the internal market in financial services. The EU proposal also focuses on minimum capital requirements, a supervisory review process, and an emphasis on market discipline.

The Basel Committee on Banking Supervision and the European Commission want to create a new global capital framework that guarantees greater stability of the international financial system by better reflecting the changes in financial markets in recent years. By cooperating closely and by coordinating the timing of the review processes, both institutions ensure that the harmonization rules do not contradict but rather complement one another. Basically, the policy response coincides with the recommendations following from the theoretical analysis of this chapter. Rather than relying on unbridled systems competition, collective international action is taken to avoid the welfare losses from lemon banking that otherwise might occur.

It should not be overlooked, though, that both the Basel and the EU approaches suffer from a lack of enforcement possibilities for countries not directly involved. The original Basel agreement was a voluntary commitment by the G-10 countries, and Basel II is a voluntary agreement backed by

22 See Basel Committee on Banking Supervision (2001) for the details of the latest proposal.

13 countries. The EU rules will be binding for all 15 EU countries, which will have to adjust their banking laws accordingly. Other countries, in particular Latin American and Asian countries, cannot be forced to obey the rules if they do not want to. In total only 19 out of 206 countries in the world have committed themselves. How the other countries will react and whether this number is enough to make systems competition workable remains to be seen.

References

Dornbusch, R. (2003), The New International Architecture, FinanzArchiv 59, 296-304. (This issue)

Hans-Werner Sinn
Ifo Institute of Economic Research
Poschinger Str. 5
81679 München
Germany
Sinn@ifo.de

24 The participating countries are the EU countries, Canada, the U.S., Japan, and Switzerland.