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Chapter Tl]ree
The Structure of Risk Preference

In the two preceding chapters it was shown how consistent decisions
can be reached under uncertainty. By the use of, subjectively formed,
equivalent objective probabilities the expected utility of each decision
alternative has to be determined and then the alternative with the
highest level of expected utility must be chosen, Unfortunately this
advice remains quite meaningless as long as all that is known is that the
utility function reflects the decision maker’s preferences, while the form
of this function is quite unknown. This chapter, therefore, attempts to
gain more specific information on the shape of the utility function.

Part A sets out some scientific findings from psychophysics. Part B
considers the evaluation of probability distributions involving negative
wealth. Part C discusses a rival preference hypothesis formulated by
Arrow.

For the following analysis, we need a more detailed idea of the notion
of ‘wealth’ than before. Wealth is seen as an indicator of all future con-
sumption possibilities, and it is assumed that these consumption pos-
sibilities are the source of the utibty gained from owning wealth.
Wealth, therefore, is defined as the sum of material wealth and human
capital. Human capital is the present value of all future net incomes and
is assumed to be non-random. In the classical manner ‘net’ means that
the reproduction cost of labor, i.e., the physical subsistence minimum,
i5 deducted from the income of labor. Accordingly, the future consump-
tion possibilities mentioned above comprise gross consumption minus
what is necessary for minimum subsistence. It is assumed that the path
of consumption! being fed out of end-of-period wealth v is proportional
to the size of this wealth. This assumption, which will be legitimated in

UIn this chapter it is still assumed that, in the current period for which the decision
under risk is examined, there is no consumption. This assumption is removed in chapter
IV B,
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the next chapter, is compatible with monetarist consumption hypotheses
like those of MobiGLiani/ BruMBerG (1955) and Friepman (1957). More-
over it is assumed that, al each point in time, the money value of con-
sumption can be interpreted as a quantity index of a homogeneous
bundle of consumption goods. This is a highly idealized assumption,
since the structure of the bundle demanded will, in general, vary with its
size. The idealization is roughly the kind used when national product is
interpreted as a quantity measure? and may be justified by the fact that
the evaluation by market prices transforms heterogencous commodities
into homogeneous values?,

Section A
Psychological Aspects of Risk Evaluation

1. Psychological Relutivity Laws

The next section will establish a hypothesis concerning the shape of
the von Neumann-Morgenstern utility function. This section provides
the key to this hypothesis by discussing theoretical and empirical aspects
of a fundamental psychological relativity law.

1.1. Bernoulli’s Relativity Law

Among the topics treated in BernourLt’s (1738) specimen theoriae
novae de mensura sortis, it is the expected-utility rule as such that parti-
cularly seems to interest contemporary economists, although this rule
was actually developed by Cramer (1728), not by Bernoulli himself.
Bernoulli’s own contribution was to establish a particular hypothesis
regarding the shape of the utility function. This hypothesis is that the
utility function is logarithmic.

2This interpretation is common practice in public discussions and underlies all macro
economic one-sector models.

30ur assumption may be also explained by the theory of the wsility iree developed by
StroTz (1957, 1959) and GorMan (1959a and b). According to this theory, a decision
maker first determines the optimal apportioning of his budget between different com-
modity bundles which are considered as homogeneous goods, the price of which is the
price index of the single commodities in this bundle. Only after this decision are the sub-
budgets so formed apportioned. As suggested by the theory, end-of-period wealth can be
perceived as representing a single homogeneous commaodity bundle whose structure is not
subject to choice at the present stage of decision making. Interpreted in this way, the inter-
temporal optimization approach presented in the next chapter deals with the decision
problem on a higher level of the utility tree where wealth is no longer homogeneous bul
where consumption still s,
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The reasoning in favor of this function is of such an amazing origi-
nality that it is surprising that so little attention has been paid to it in
recent times, except for an appreciative remark by BorcH (1968a, p. 45)
and Savace’'s (1954, p. 94) statement ‘To this day, no other function has
been suggested as a better prototype for Everyman’s utility function.’
At the turn of the century, the situation was different. Then, the
logarithmic function was seen as the crucial point in Bernoulli’s article'.
MagrsHaLL (1920, pp. 1111.) rather favored this function, though with
some reservations; it was discussed in connection with the sacrifice
theory of taxation by, for example, Sax (1892, pp.76-79); and, still
earlier, LarLace (1814, p. XV) had championed it.

Let us then follow Bernoulli’s reasoning. After giving a definition of
wealth largely compatible with the one given above?, he says (§ 6):

If a person ‘... has a fortune worth a hundred thousand ducats and another a fortunc
worth the same number of semi-ducats and if the former receives from it a yearly income
of five thousand ducats while the latter obrains the same number of semi-ducats it is quite
clear that to the former a ducat has exactly the same significance as a semi-ducat to the
latter, and that, therefore, the gain of one ducat will have to the former no higher value
than the gain of a semi-ducat to the latter. Accordingly, if each makes a gain of one ducat
the latter receives twice as much utility from il, having been enriched by two semi-ducats.’

In these sentences Bernoulli formulates a psychological relativity law.
For the rich man the gain of one ducat has the same meaning as the gain
of half a ducat has for the man who is only half as rich since, from a
subjective point of view, it is the refative change in wealth that matters.

The way Bernoulli’'s argument is formulated suggests that it is not
limited to small wealth changes of one or two ducats but is meant in a
broader sense. ‘Equal percentage changes in wealth induce equal ab-
solute changes in utility’ seems to be what he wanted to say, i.c.,

(1) AU=I(A—;’)* £(.)>0, F(0)=0.

The only reason for referring to small changes in wealth is to make
plausible a differential equation of the type

(2) dU=b%. b = const. >,

1S¢¢ the comment made in 1896 by the editor of the German translation of BEgrnouLL)
(1938), L. Fick, on p. § of his introduction.

2Even the problem of a homogeneous flow of consumption goods that is fed out of
wealth is clearly seen by Bernoulli. CI. his prisoner example in § 5.
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for here, instead of the function symbol f(.), a constant factor b can be
used. Assume that the utility function U(. ), and hence also the function
f(.), is twice differentiable. Then, with Av/b—0, (2) indeed follows
from (1) if we set b= f"(0). An integration of (2) immediately produces
Bernoulli’s function U(v)=a + b Inv or rather, because of the meaning-
less of a linear transformation?,

(3) Ulv) = Inv.

This in turn implies that the function f(.) postulated in (1) does indeed
exist and that it shows the desired properties for large changes in wealth
as well as for small changes:

(4) AU:f(%)=ln{u+du}+lnu

(U+Au)
=In i
U

It is useful to calculate for Bernoulli’s function the intensity of in-
surance demand as defined in chapter 11 C 1.3. Applying the inverse
function U~'(.) to U[S(ag — C)] = E[U(ag - C)], i.e., to In[S(ag — C)] =
Elln(ag—C)] we can derive an explicit expression for the certainty
cquivalent and thus for the intensity of insurance demand:

aq — l]l (ag — ;)™
E(C)

(3) =

Here ¢; is the ith variate of the loss variable and w, is its probability?. As
can easily be seen, g is homogeneous of degree zero:

Aaq — H (Aag— Ac;)™
i=1i
E(AC)

(6) g =

Thus Bernoulli’s relativity law brings aboul the interesting result that,
with given probabilities, a proportional increase in wealth and all loss
variates also increases proportionally the maximum premium from the

ACI. expression (11 C 2).
4 Because of (I1 C 14) and (11 C 17), g = lag — Slag — C))/E(C), and from In[S(ag - C)] =
Elln{ag—C)] it follows that

S{ag — C)=expE[Inf{ag— C)] = exp E w;Inlag —c;) = ﬂ lag — o)™,
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point of view of the purchaser. In other words: the intensity of demand
for wealth insurance is independent of the size of wealth.

This plausible implication of Rernoulli’s relativity law was quite
recently classified by Pratt (1964) and Arrow (1965) as constant rela-
tive risk aversion and would have been willingly accepted in modern risk
theory had Bernoulli offered a more profound basis for his analysis.
Quite correctly, as was shown in chapter II, he was critized for using the
utility function of non-random wealth for the evaluation of probability
distributions. But although the criticism only referred to this part of
Bernoulli’s argument, the argument as a whole was dismissed. In this
way, quite unintentionally, the baby was thrown out with the bath
water.

To show this it seems worth-while to digress to psychophysics where
similar ideas have been developed. Psychophysics allows us to find the
proper basis of Bernoulli’s reasoning so that later we can attempt to
rebuild his approach on a more solid foundation.

1.2. The Relativity of Stimulus Thresholds

If someone whispers softly we often cannot understand him even
when everything is very quiet. When the surrounding noise level is high,
we sometimes cannot hear what he says even if he speaks loudly. Even
on a clear moonlit night our naked eye can only see a few of the stars we
can see through a high-powered telescope. In daylight we can hardly see
any stars at all although they are shining just as brightly as they are at
night. In all these cases, stimulus thresholds obstruct proper perception.
In the quiet room or at night absolute limits to sensation are encoun-
tered; thus the term absolute threshold is used. With high noise levels or
in broad daylight the intensity of the stimulus is not sufficient to pro-
duce a perceptible difference in relation to the environmental stimulus;
thus the term differential threshold is used.

The differential threshold is of particular interest. The above
examples suggest the possibility that a given absolute change in the
intensity of a stimulus is perceived when the overall intensity is low but
not when it is high.

This phenomenon can be formulated more precisely by referring to an
experiment carried out more than two hundred years ago by BouGugr
(1760, pp. 51-58). There is a dark room with a white screen. In front of
the screen at a distance of one foot a lighted candle and a dark form are
placed side by side. A second lighted candle is placed in front of the
form so that the form is silhouetted against the screen. The distance
between this candle and the screen is altered until it just becomes impos-
sible to perceive the silhouette against the bright background. Bouguer
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found that there was a critical value of 8 feet, which means that the
brightness of a shadow must be exceeded by the brightness of its
environment by 1/64 if it is to be perceptible. Fecriner (1860 I,
pp. 147-151) repeated the experiment and found a surprising invariance
in the proportion 1/64 that Bouguer had indicated; whatever the dis-
tance between the screen and the first candle, the crucial distance for the
second candle is always exactly eight times as large.
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Bouguer's experiment

Figure 1

Let r denote the stimulus intensity and Ar the differential threshold.
Then this result implies

(7) Ar=ar, a=const.,

or in words: The differential threshold is a given proportion of the
initial stimuvlus intensity. This general phenomenon was called Weber s
law by Fecuner (1860 1, pp, 134-139).

Independently of Bouguer, Ernst Heinrich Weser (1834, esp.
pp. 87-90, 171-175; 1846, esp. pp. 89, 104-107, 134-139) found similar
results in a series of weight experiments he carried out. The question was
how big must the difference between two weights be before they are per-
ceived as being different when lifted manually. The remarkable result
that Weber found is that the difference is a given proportion of the
lighter or heavier weight, respectively, largely independent of the size of
these weights. For the human hand Weber found a relative threshold of
1740 with respect to the ligher weight. This result was confirmed in
many further experiments. Weber also examined the human ability to
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distinguish between the lengths of two lines shown consecutively, and
between two consecutively produced pitch frequencies. He found rela-
tive differential thresholds of 1/100 or 1/322, respectively, for persons
experienced in the tests.

After Weber, many other scientists, FEcuner (1860 1 and I1)° in parti-
cular, experimented with a large number of stimulus continua®, being all
measurable on a ratio scale. The results of these experiments broadly
confirm Weber’s findings.

il
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Source: Konic and BropHun (1889) (results for Konig) in connection with
information from Hecut (1934) and Ricas (1971)

Figure 2

For a time it was, however, fashionable to question the validity of
Weber’s law. It was argued that the relative threshold is not quite so in-
variant with respect to the intensity of the stimulus as Weber’s law sug-
gested’, for the curve relating the relative threshold to the stimulus
intensity seems typically to have a shape similar to the one reported in
Figure 2. This curve was constructed from data provided by KoniG and
BropHUN (1889). It reveals that the relative stimulus threshold for small

s Among the continua studied by Fechner are brightness, sound pressure, weight, visual
estimation, tactile estimation, and color.

6 For example Konie and BropHuN (1888, 1889; brightness); voN BEKEsY (1930; sounid
and vibration): Houway and PraTT (1936; taste, loudness, smell, brightness). Recently
Weber's law was shown to hold even for very small time intervals: GETTY (1975).

TSee Boring (1942, pp. 1381.).



130 The Structure of Risk Preference 111

levels of the stimulus intensity, i.e., for intensities close to the absolute
threshold, is greater than for intensities in the medium range. The same

holds for intensities close to the level which would destroy the receptor
organ. For the light continuum, the deviation from Weber's law, which
1s shown by Konig and Brodhun’s data, can be confirmed by anyone
who thinks about the way contrasts seem to vanish when the light is
either extremely bright or extremely dim. Thus Weber’s law does not
hold for extreme intensity levels. On the other hand, its practical
validity is much greater than an initial glance at Figure 2 suggests. Note
that the abscissa denotes the logarithm of stimulus intensity. As soon as
we plot the same figure with reference to the intensity itself the range
where the relative threshold is constant immediately appears to be enor-
mously expanded. This appearance is not deceptive for, as STEVENS
(1951, p. 35) estimates for the cases of sound and light sensation, the
horizontal range covers 99.9% (!) of the intensities that occur in
practice.

Of course, there are additional problems. The stimulus threshold will
generally depend on a number of other factors such as fatigue, practice,
mood, etc. If these influences cannot be taken into account, they lead to
stochastic disturbances in Weber’s law®. This, however, does not affect
the general phenomenon that, under given exogenous conditions, there
1s a given relative threshold that, over the practically relevani range, is
independent of stimulus intensity.

1.3. The Psychophysical Law

Gustay Theodor Fechner devoted his life’s work to the discovery of
the relationship between body and soul. Fortunately he reduced this
highly metaphysical intention to the problem of finding a functional
relationship between the intensity of a stimulus and the intensity of
sensation, 1.e., to finding the so-called psychophysical law. Thus,
Fechner became the founder of a branch of science, which, at the end of
the last century, was intensively investigated in Germany and which has
had a renaissance in recent times through the experimental work of
Stanley S. Stevens and his co-workers. FEcHNER’s (1860 1 and II)
Elemente der Psychophysik and Stevens’s (1975) Psychophysics are
landmarks in scientific research set a century apart.

1.3.1. Fechner’s Law
Searching for the psychophysical law

(8) 5 =s(r),

BCT. the foundation of stochastic scaling methods by THursTONE (1927).
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where s denotes the subjective intensity of a physical stimulus of inten-
sity r, Fechner made use of Weber’s threshold theory that he had
himself confirmed by a number of experiments which are still famous
today. He assumed that every just perceptible change in a stimulus
intensity brings about the same change in the intensity of sensation.
Accordingly, he argued that the difference between two levels of sensa-
tion intensity can be measured by the number of just perceptible steps
between them. Let o denote the ratio between the differential threshold
and the corresponding previous level of stimulus intensity. Then, for
two stimulus intensities r and r* r>r*, between which there arc 7
steps’, it holds that

(9) r=1+a)'r*.

Here, by assumption,
(10) n=s(r)— s(r*)

denotes the difference in sensation intensities which is defined up to a
multiplication with a positive constant. Inserting (10) into (9) and taking
the logarithm we have

(11) s(r)—s(r*)=In (_.r_) !

r* ) In(l +a)

This expression implies a result that is denoted as Fechner’s law: Equal
relative changes in stimulus intensity bring about equal absolute changes
in sensation intensity. With r*= const. (11) gives

(12) s(ry=a+finr, f>0,

an equation describing the relationship between stimulus and sensation
we were looking for'”,

9CF. Fecuner (1860 11, pp. 9-29). We do not follow Fechner’s presentation. The
integration of his fundamental equation dG = bdr/r which corresponds closely to that of
Bernoulli (cf. equ. (2)) must be interpreted as an approximation since thresholds cannot
become infinitesimally small. This approximation is, in principle, admissible but at this
stage it is avoidable.

i0 Note that, because of the way it was derived, s(r) is only defined for a discrete scale
with given sensation intervals as units. Thus it seems that our senses show the environment
in a digital rather than in an analogous way. This observation, secn in the light of what we
know about digital computers, suggests a possible explanation of thresholds as such.
Thresholds reduce precision in monitoring the envirenment. Such a reduction in precision
was an evolutionary advantage which developed in order to economize on the ‘costly’
caleulation capacities of our brains. Cf. the discussion of the Axiom of Ordering in con-
nection with thresholds (eh. T 1.1).
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Equation (12) and the reasoning behind it are very similar to
Bernoulli’s theory. Fecuner (1860 I, esp. pp. 236-238) knew this. He
went so far as to stress the appropriateness of his formula for a utility
evaluation of wealth, arguing that wealth is a means of producing
‘werthvolle Empfindungen’ (valuable sensations) and so can act like any
other stimulus.

Fechner’s law was subject to a great deal of criticism, for he did not
attempt to legitimate his basic assumption that all just perceptible
increases in stimulus intensity appear subjectively equal. So his law does
not follow automatically from Weber’s law and it is easy to understand
why, for a long time, it was not accepted.

1.3.2. Stevens’s Law

Stevens was one of Fechner’s most profound critics. After the most
extensive experimental work in the field of scaling problems that has
ever been carried out, he believed he had good reason to replace
Fechner’s logarithmic law by a power law!'. The sensation function that
he found inductively is determined up to a multiplication with a strictly
positive factor of proportionality'? x and reads

(13) s(ry=«xr%;k, ®>0.
Bccause of
(14) Ins=Ink+@lInr

it is a straight line in a (Ins, Inr) diagram, The power function describes
another psychophysical relativity law. Since, comparing two stimulus
intensities r and r*, we have

L e A
s s(r*) (r) ’

Stevens’s law can be formulated analogously to Fechner’s law'*: Equal

I CF, in particular STeEvens (1956, 1959, 1961, 1962, 1966, 1975). The survey of his
works published in 1975 was finished by Stevens shortly before his death.

|2The proportionality factor has no meaning since a change in the unit in which r is
measured changes its size:

k(rx)P=kr? with x=x'x?

13§TeEVENS (1975, p. 16). This formulation had already been used in the discussion of
Fechner's law that took place at the end of the last century. Cf. Fecuner (1888, pp.
174-179).
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relative changes in stimulus intensity bring about equal relative changes
in sensation intensity.

Stevens’s law had previously been derived by Prateau (1872),
FuiLerron and CatTeL (1892)'4, MEmvonG (1896), and GuiLrorp (1932)
from a modification of Weber’s law'’. However the legitimation pro-
vided by these authors met with little approval.

Thus Stevens wanted his sensation function to be seen independently
of Weber’s law which he regarded as incontestable. Accordingly, his
experiments were not designed to find out about thresholds in order to
measure sensation indirecily via the summation of these thresholds.
Instead, the persons interviewed were asked to indicate the magnitude
of alternately offered stimulus intensities by numbers they themselves
could choose. This direct method of measuring sensation is called
number matching.

Table |
Estimates in the Size of Selected Stimuli*
(measured exponent in 5 =kr®)

loudness (sound pressure of 3000 Hz) 0.67
vibration 250 Hz 0.6
vibration 60 Hz 0.95
brightness (point source) 0.5
visual length 1.0
visual area 0.7
saturation of a red-gray mixture of colors 1.7
salt concentration 1.4
muscle force 1.7
heaviness 1.45
electric shock 15
vocal effort 1.1

e

* Source: STEVENS (1975, p. 15

Those who, along with Pareto, Hicks, and Allen, believe that people
cannot do more than indicate *better or worse’, ‘larger or smaller’, and
‘more or less’ will be surprised to hear about Stevens’s findings. People
did not feel overburdened when asked to assign numbers to the stimuli
offered to them: they acted in the way described by Stevens’s law, and
not just by making stabs in the dark. Table 1 reports some of the
exponents that Stevens measured with the method of number matching.

The reliability of Stevens’s results can be confirmed by a modification

14 Cited according to GuiLrorD (1932, pp. 401.).

13 Frcuner (1877, pp. 1011, and 21) characterized the difference between the logarithm
and the power laws by distinguishing the equations ds = fdr/r and ds/s = @ dr/r. A com-
parative discussion of the two approaches is given by GroTenrFELT (1888, pp. 15-200,
WunnT (1908, pp. 638-645), and Memnona (1896, pp. 380-388).



134 The Structure of Risk Preference 111

of the experiments presented by Stevens (1959, 1961, and 1966) that is
called cross-modality matching'®. According to this method, people are
asked to associate different intensities of a stimulus not with numbers
but with the intensities of another, freely choosable, stimulus in such a
way that both stimuli seem equally intensive, Thus, with the two sensa-
tion functions s, =x,r{"! and s, = K,rs?, for any r, offered, r, must be
chosen by the experimental subject so as to ensure

{]6] 51 =58
Because of
(17) Kyt = i1
and hence
lﬂﬂ'z—lnx[ Q}
18 Inff=———— + —1In
(18) I o, o, I

a straight line has to be found in a (Inry, Inr,) diagram if Stevens’s law is
to be valid. In addition, the slope of this line has to equal the ratio
©,/0, of the slopes found by the method of number matching. To a
surprising extent, both requirements are met'’. An example for the
result of a cross-modality study is illustrated in Figure 3. There, sound
pressure acts as stimulus r, and the other stimuli indicated act
alternately as r;. Because of the irrelevance of their vertical intercepts,
the lines in Figure 3 are arbitrarily ordered, but the slopes reflect the
measurement results. Since the number-matching exponents are known
for all stimulus intensities r,, it is possible to calculate estimates
©, = @,/@* for the loudness exponent with the aid of the slopes @* of
the curves plotted in Figure 3. Stevens found a geometric mean of 0.67.
This value is almost identical to the exponent measured in direct
number-matching experiments'®. Perhaps chance was responsible for
this surprising result. However, Stevens (1975, pp. 113 and 117)
succeeded in citing a number of further cross-modality experiments that
led to a fairly consistent structure of exponent ratios. By the standards
ol a social science theory this result is of exemplary accuracy.

'O Stevens (1975, pp. 109-111). The method seems to have first been used hy
von BEresy (1930, pp. 346-348) who compared the sensations of vibration and loudness.
Von Bekesy found a value of @1/6; = 1 which roughly fits the results reported in Table 1.,

"See Stevens (1975, pp. 99-133).

MEEvENS (1975, p. 119) cites a study by Moskowitz (1968). not available to the author,
where a value of 0.676 is found.,
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e

S0

sound pressure level in decibels
o
=

relative intensity of criterion stimulus

Source: STEVENS (1966).

Fipure 3

1.3.3. The Missing Numeraire

Although there is no reason to doubt the validity of Stevens’s empiri-
cal findings', different interpretations are possible. Stevens himself
proposed one, namely, that the subjective intensity of sensation
resulting from an objective intensity of a stimulus was measured. But
there is another possibility?. It traces back to a short note by ExMaN
(1964) and is based on previous conjectures by Garner, HakEe, and
ERIKSEN (1956, pp. 155-157) and ATiNeave (1962, pp. 623-627). This
interpretation is that number-matching is a special kind of cross-
modality matching?!, since the persons participating in the number-
matching experiment set the intensity of number sensation equal to the
intensity of the stimulus proper. Suppose in equations (16)-(18) the
function s; = &, re! is the sensation function for numbers and suppose
further that, through number matching, the exponent ®&* has been
found for a certain stimulus 7,. Then this exponent is in fact the ratio of

19The author is not aware of any criticism of the reliability of Steven’s experiments.

20 A further interpretation was given by Warren (1958) who argued that the measured
result reflects the correlation between the offered stimuli as experienced in reality and/or
knowledge of physical scales if available. This interpretation is not compatible with the
fact that experimental subjects make ‘mistakes’ when estimating well-known continua
such as areas and weights (cf. Table 1). Moreover, this interpretation cannot explain the
fact that cross-modality matching brings about consistent results even when people are
required to match stimuli with one another thal, in real life, are not correlated.

2 Spvens (1975, pp. 34 and 107 £.) is sympathetic to this interpretation without, how-
ever, drawing conclusions similar to those of EKman.
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the true exponent of the sensation function for the stimulus in question
(©,) and for numbers (&,):

(19) " e %
6,

Since of course a similar result holds for all other estimated exponents,

in all cases one scale is merely measured by the other. The whole system

of cross-modality estimations lacks a numeraire that provides the link

with the true intensity of sensation.

The only, by no means convincing, ‘argument’ Stevens was able to
put up against this view was simply the assumption that the exponent of
number sensation is unity?2. This assumption does not become any more
plausible merely because the number continuum and the length of a
straight line are subjectively proportional (@*= 1), as Table 1 reveals.
For how do we know what the law is that governs the sensation intensity
when the length of a straight line is perceived? From Fechner’s point of
view, it could be argued that the application of Weber’s law to a com-
parison of distances establishes a, strongly curved, logarithmic sensa-
tion function and not a linear one.

How much the lack of an anchor causes the position of Stevens’s
system of exponents to drift may be shown by a thought experiment.
Suppose the true exponent of number sensation falls from 1 to 0 so that,
given the exponent ratios, all number-matching exponents also fall to
zero. In a (Ins, Inr) diagram like that of Figure 3, this rotates all the
straight lines towards the abscissa. Given the range of values on the Inr
axis the range of values on the Ins axis then shrinks to zero. Thus the
curvature of the Ins curve progressively loses its significance and the
curve may finally be approximated by a straight line. Thus, in practical
terms, we approach a semi-logarithmic diagram which implies that, in
the limiting case of our thought experiment, al// of Stevens’s power func-
tions reduce to logarithmic functions of the Fechner type.

To check this result algebraically assume that the true sensation
functions are logarithmic and try s, = e, + f#; Inr; for the number sensa-
tion function and s;=o;+ 6, Inr; for any of the other functions.
Because of*

(20) o +0Inr =0+ fInr

L SteVENS (1975, p. 107).

BSTEVENS (1975, p. 14).

24 Here the logarithmic functions are defined up to an additive constant since a change
of the dimension of r must not exhibit any influence:

'+ fAin{rx)=a+ flnr with a=a’'+ flnx.
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the linear equation

) and Bzgz

By’

oy—

(21) Inry=Ink + @Inr; with x:exp(
1

is indeed achieved. The equation corresponds to Stevens’s function (14)
if the numbers nominated by the people participating in the experiments
are interpreted as information about stimulus r and not about sensation
. This is Ekman’s result that, in a completely analogous way, can be
extended to other combinations of stimuli.

A possible question arising at this stage is whether Stevens may be
partially right since some functions are of the power type and others are
logarithmic. The above heuristic thought experiment clearly answers
this question in the negative. Indeed, trying s;=a;+fInr; and s;=

x,r$ we find that cross-modality matching requires

(22) a + By Inr = 15"
or equivalently

o K
(23) Inr, = R —zrzﬂﬁ.

B B

Since rf1={el“'1}92=e62'“r1 and @, >0 this implies a strictly convex
curve in the (Inr;, Inry) diagram which is incompatible with Stevens’s
results. Thus Stevens's interpretation of the body of empirical findings
must be either right or wrong. An intermediate solution does not exist.
Summarizing, we may therefore state that whether the sensation func-
tions belong to the class of power functions (s= kr®) or to the class of
logarithmic functions (s=a+ f1nr) remains an open guestion despite
the careful empirical research that has been carried out. In any case, all
the functions must belong to the same class. For example, this means
that all sensation functions are logarithmic if even a single one can be

shown to be of this type.

1.3.4. Fechner's Law versus Stevens’s Law: The Empirical Evidence

The Phenomenon of Logarithmic Interval Scales

The question we consider now is which class of sensation functions
prevails in reality: the logarithme or the power class. Neither adding just
noticeable differences nor direct number matching provides an answer
to this question. There is, however, a method that, at least in principle,
can determine the correct sensation function.

This is the method of interval or category estimation. Here, the
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experimental subject is asked to classify given stimulus intensities into
equidistant magnitude cafegories or to manipulate a set of stimulus
intensities so that the distances between them seem to be subjectively
equal. That this procedure cannot bring about more than an interval
scale is self-evident. The basic difference between interval estimation
and the direct methods of measuring employed by Stevens is that, rather
than comparing two different continua, the increase in stimulus inten-
sity on a certain level is compared with an increase in the intensity of the
same stimulus on another level.

To facilitate an interpretation of the empirical findings, it is useful to
consider the relationship between the subjectively equal distance A7 and
the stimulus intensity r that would prevail under the two laws. As a first
approximation we have

(24) As = 5'(r)Ar = const.

Let 4, . denote the elasticity of Ar with respect to r and #,, , the elas-
ticity of s'(r) with respect to r. Then, (24) implies that

(25) Harr = —He(ryre

The negative elasticity —ny,, . is @ measure of concavity and uniquely
characterizes the class of functions prevailing:

1-@es()=a+p60r° B£>0, O=+0,

(26) —MNs' i r= { 1 es(h=a+fInr, B>0.

With a little calculation, this contention can easily be checked. Com-
bining (26) and (25) we find that the two competing laws imply

<1, if s=xr?,@>0 (Stevens),
27) ’Lnr,r{ G

=1, if s=a+ fInr (Fechner).

Thus, under Fechner’s law the size of the subjectively equal increases in
stimulus intensity rises proportionally and under Stevens’s law less than
proportionally with the objective level of stimulus intensity. 1f @ <0,
i.e., f4.,>1, then the sensation function is even more curved than the
logarithmic function: neither Fechner's law nor Stevens’s prevails.
Ekman’s result showed that, from a theoretical point of view, there is
no conflict between Stevens’s empirical findings and Fechner’s law. The
rehabilitation of Fechner’s law thus begun is completed by the empirical
results achieved by using interval measurement. These assign far more
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relevance to the logarithmic sensation law than Stevens and his fol-
lowers® have been willing to accept.

The first interval experiment was carried out by PrLAaTEAU (1872).
Asking painters to blend colors so as to produce a gray halfway between
black and white he found a value of* n,,, =2/3. However, he was
spon corrected by DeLeoer (1873, esp. pp. 50-101) who repeated the
experiment in a somewhat modified form. Delboef produced the gray
by means of a rotating disk with black and white areas, a procedure that
has the advantage of giving more precise information about the propor-
tions of the blend. His results favored the logarithmic function,

Repeating Delboef’s experiment GuiLrorp (1936, pp. 1991.) found
that the curvature of the sensation function is not, as Plateau con-
tended, smaller than that of the logarithmic function, but is, on the
contrary, bigger. From the numerical results he reports, the value of
far» = 1.15 can be calculated?’. This again is closer to Fechner’s than to
Stevens’'s hypothesis.

HeLson's (1947) experiments also confirm the logarithmic function
for the sensations of brightness and loudness. If a number of stimulus
intensities are sequentially offered to the experimental subject then, in
general, the geometric mean of the perceived intensities serves as the
adaptation level, i.e., as the point of reference for subsequently offered
intensities. The formula for the adaptation level (AL) of perceived
stimulus intcnsitics r; 1S

(28) AL =] r™

i=1

where w; denotes the weight factor of a particular stimulus. Because of

(29) InAL = i: w; Inr;

23CF, the articles contained in the *Handbook of Perception’ edited by CapTERETTE and
FriEDMAN (1974).

261 there are only two intervals that have to be set equal, the term biseciion method is
used. The experimental subject is asked to manipulate the intensity 7 of a stimulus so that
it seems to be in the middle of twe intensities affered to him. If Fechner's law is valid then
it has to be expected that F=}/r;ra, for this equation implies that
k. Inry+1Inra

InF

27 Let the sensation Function that is defined up to a positive linear transformation be
§=6r9 @40, where the factor & merely has the task of determining the sign, Then for
two stimulus intensities ry and ra, whose psychological mean is F, we have the formula
&r8 = (@rP+ @r)/2 from which @ and hence —nepy, = Mar = | — @ can be calculated
by a process of trial and error. For the estimates ry = 100, r2= 2500, and =411 reporied
by Guillord a value of @ ==(.1529... is found.
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this formula obviously implies a logarithmic sensation function?®,

A logarithmic function (14, ,=1), moreover, is the result of an
experiment where the experimental subject has the task of ordering
weights into equidistant categories. This experiment was reported by
Trreuner (1905a, pp. 33 £, and pp. 82-85) who dated it back to Sanford.

An experimenium crucis is a frequency test carried out by THURSTONE
(1929) and Guirrorp (1954, pp. 103-106) that could have been con-
structed as an answer to Stevens’s number matching except that the
sequence in time makes this impossible. The experimental subjects are
required to sort white cards, covered with black dots in different
densities, into subjectively equidistant categories that are numbered
consecutively. The result is that the category number is a logarithmic
function of the true number of dots on the cards. An objection to this
experiment, which equally well can be raised against Sanford, may be
made® on the grounds that people possibly tend to fill the categories
equally, so that the distribution of dot densities in the set of cards is
crucial for the result of the experiment. However, even if this objection
against logarithmic sensations of numbers were substantial, the ques-
tion remains of why people chose a number system where the length of
the written number is proportional to its logarithm rather than to the
frequency it describes.

Despite all their criticism of the experiments of Thurstone and
Guilford, even GavranteErR (1957) and Stevens (1961) confirm the
tendency of these results™¥, Comparing number-matching scales and
interval scales, they too find that the latter are biased towards a stronger
curvature which, because of (24)—(27), i1s a bias towards Fechner’s law.

After the studies of Galanter and Stevens, a number of further inves-
tigations into the size of this bias have been carried out. In their review
article Ekman and S10BERG (1965, p. 464) summarize the result that is a
triumph for Fechner: ‘The logarithmic relation between indirect interval
and direct ratio scales is now a well-established fact for a great number
of continua.” Among the empirical investigations, those of GALANTER
and Messick (1961) and EisLer (1962b) in particular are worth stres-
sing’'. Both investigations show that for loudness the interval scale is
logarithmic and the number-matching scale is of the power type. The
result is of considerable significance in that, with respect to loudness in

M A detailed foundation for this function is given by Heison (1964, pp. 57-62). The
relationship to Fechner's law is treated in the ‘reformulation’ on pp. 197-231. Cf. also
Jomnson (1955, pp. 343-348).

M See THURSTONE (1929, pp. 223 1.).

WO, also Stevens (1975, pp. 130 and 147-149),

Y See STEVENS (1975, pp. 115-120).
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particular, a great many cross-modality experiments have been carried
out®, Recall however, that all scales in Stevens’s system must be
logarithmic if even one of these is shown to be logarithmic!

Apart from the results reported above, there is some evidence for
logarithmic functions in connection with technical scales. For example,
the decibel scale for loudness represents a logarithmic relation with
physical sound pressure and the DIN scale of film speed has a corres-
ponding property?3,

It is even more surprising that there is a logarithmic trend relationship
between the musical scale and sound frequency as shown by Figure 4%,
The reason for the systematic oscillation around the trend is that,
although each successive octave doubles the frequency, the intervals
between successive notes in the octave do not bring about the same per-
centage increases in frequency. The oscillation represents the Wohi-
temperatur (equal temperament) of the scale established by J.S. Bach
which ensures that, to avoid fluctuations in pitch, the ratio of any pair
of notes is an integer. Equal temperament does not contradict the
Fechner hypothesis that equal relative changes in frequency seem to be

pitch
2

I

g
O

"

&

34 56 538 ’IEi.I'.'.iI 6.2 64 6.6 6.8 In frequency (in hz)

440 hz
Figure 4

2 Further experiments leading to analogous results were reported in Ekman and
SioBERG [1965).

733° DIN = doubling of light intensity.

" For the historical development of the musical scale see Boring (1942, pp. 312-332).
The connections with the psychophysical relativity law were already stressed by E H._
WeBER (1846, p. 106), WunpT (1863, p. 81), and Lipps (1905, pp. 115-128).
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subjectively equal, for the intervals on an equally tempered scale in fact
appear to be different. This is demonstrated by the fact that the sound
pattern of a melody played in A Major differs from that of the same
melody played in C Major while a jump of an octave leaves the sound
pattern unchanged.

The result is of particular importance in that mathematicians do not
seem to have been involved in the historical development of the musical
scale. Fechner’s law is demonstrated very clearly: equal relative changes
in sound frequencies are perceived as equal absolute changes in pitch.

This has also been confirmed by an experiment carried out by Warp
(1954, esp. p.373). He found that musicians have some difficulty in
producing the octave of a basic note offered to them, but, when asked
to produce even higher octaves, they stick to their subjective octave with
a remarkable degree of accuracy. The subjective octave is in general not
a change in frequency of 100% but is a given percentage® of the initial
frequency.

The Results of Neurological Measurement

The empirical findings reported so far have one thing in common. In
all cases they refer to a functional relationship between an objectively
measurable quantity and a subjective intensity of sensation consciously
revealed by experimental subjects. Another way of finding out about
the intensity of sensation is to measure directly the electro-chemical pro-
cesses in the nervous system. For the case of simple stimuli that, in
principle, can be transmitted by single receptor organs, there is a sub-
stantial body of empirical evidence provided by the studies of FROHLICH
(1921), Aprian (1928)*, and many subsequent authors. It is now known
that the stimulus arriving at a receptor is first transformed into an
action current which is then transmitted via the nerve fibers in a compli-
cated process of electrical and chemical reactions. What we should
know about this process in order to evaluate the empirical results is that
the intensity of a stimulus affects the intensity of the action current (as
measured in volts) and the action current controls the frequency of
impulses transmitted via the nerve fibers.

¥ Pitch belongs to the group of metathetic (qualitative) continua for which, according
lo STEVENS (1957}, even number matching produces a logarithmic function. Eisver (1963,
p. 252) remarks that this aspect implics a linear function for number sensation which is not
compatible with the above statement that the function is logarithmic, Ekman and S10BERG
(1965, p. 470) object to this argument because metathetic scales do not have a subjective
origin. If the experimental subject is nevertheless required to match numbers, they
maintain, the numbers are used not for estimating magnitudes but for labelling categories
of equal size in order to do ‘the best in an impossible experiment situation’.

¥ For a summarizing discussion see also Aprian (1932, 1947).
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Of particular interest are the functional relationships between the
intensity of the stimulus, the intensity of the action current, and the
impulse frequency. The first result cocerning these aspects was derived
by FrouLicH (1921, esp. p. 15). He found a logarithmic relationship
between the intensity of light and the intensity of the action current.
Similarly, it was shown by HarTLINE and GraHAM (1932), HARTLINE
(1938), Fuortes (1959), and Fuortes and Pocaio (1963) that the way
light intensity is transformed into impulse frequency is described by a
logarithmic function. The compatibility with Fréhlich’s result then
obviously requires that the intensity of the action current and the
impulse frequency vary in strict proportion. Precisely this was shown by
KATz (1950) and Fuortes and Pocaio (1963). These results could also be
confirmed for other kinds of stimuli. For example, GaLamsos and Davis
(1943) and Tasaki (1954) found that loudness is approximately trans-
formed into impulse frequency according to a logarithmic function and,
according to Matrugws (1931) and van Leeuven (1949), the impulse
frequency in those nerves that signal muscle tension is a logarithmic
function of the weight carried by the muscle’’. The parallelism between
these results and Fechner’s law, which has also been stressed by GranIT
(1955, pp. 8-23), cannot be overlooked™.

37 Experiments with persistent stimuli show that, with the passage of time, the impulse
frequency declines which is a sign of an adaptation process. The logarithmic functions
usually refer to the maximum frequency defined as *1/(minimum time clapsing between
two impulses)’ or ‘number of impulses in the first 1/10 second’. If the impulse frequency
is measured over a longer period or after the passage of a given period of time then, in
some experiments (Hartline), the logarithmic function no longer shows up since, in this
case, a particular dependency between the speed of the adaptation process and the
stimulus intensity affects the results. A similar problem arises when the frequency is
measured for “the first x impulses’ since in this case there is a change even in the measure-
ment period induced by a change in stimulus intensity. If the frequency is measured after
the adaptation process, then it is again a logarithmic function of the stimulus intensity.
Cf. Garameos and Davis (1943, p. 48). 1t should be noted that one of the results reported
by these authors (p. 47, Figure 8) implies a somewhat concave curve ina semi-logarithmic
diagram and hence indicates a frequency function that is not only more curved than
Stevens's power function but also more curved than Fechner's logarithmic function.

3 Rosner and Gorr (1967) contend that the results are also compatible with the power
law. Their own measurements, however, hardly support this view. They measure the
relationship between the intensity of electric current (r) perceived by the experimental sub-
ject and the intensity of the induced electric current (5) in the brain, and plot their resulls
in a diagram with the axes Ins (ordinate) and Inr (abscissa). Since all clouds of dots
derived in this way very clearly suggest concave curves in this diagram it is to be expecied
that the authors do not find a power function but possibly a logarithmic function. They
check both and indeed, for the latter, they calculate a lower variance of residuals (p. 201).
They find, however, the smallest variance of residuals for a curve that is composed from
two linear segments. If two linear segments had not brought a lower variance than the
logarithmic function, they could also have chosen three or more. At some stage in this
procedure they definitely would have reached a restatement ol Stevens’s law. What an
excellent method!
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It must be conceded, though, that in the studies cited above the true
shape of the curve relating impulse frequency to stimulus intensity
deviates from the logarithmic function in that, near the limits of the
stimulus continuum, it is flatter than elsewhere. The shape resembles a
curve that could be constructed by integrating the curve of Konig and
Brodhun illustrated in Figure 2. Thus it seems that in this case the same
phenomenon shows up that is found in threshold experiments and that
was seen to be unimportant for the practically relevant range of stimulus
intensities?,

1.3.5. Result

The guestion about the psychophysical law is the question about the
relationship between the objective intensity of a stimulus and the subjec-
tive intensity of its sensation. There are two answers competing with one
another, Fechner’s logarithmic law and Stevens’s power law.

Fechner’s law follows from Weber’s law of a relativity in thresholds,
when it is assumed that changes in stimulus intensity that just exceed a
threshold are subjectively equal. The missing foundation of this
assumption is the weakness of Fechner’s law hypothesis. In contrast to
this indirect way of reasoning, Stevens's law follows from number-
matching experiments where people are asked to directly assign numbers
1o stimulus intensities offered to them. A consisient siructure of sensa-
tion functions for a large number of stimulus continua has been built up
as a result of number-matching experiments. Included are stimuli in a
very broad sense, such as the length of a line and the size of an area.
However, Stevens’s law suffers from a serious drawback: it has to be
assumed that the numbers chosen by the experimental subjects do, in
fact, measure subjective sensation. If there is a subjective sensation
function for numbers then all measures are cross-modality results so
that a numeraire connecting Stevens’s structure of power functions to
true sensations is missing. Thus, a variety of different shapes for the
unobserved true sensation function is compatible with Stevens’s empiri-
cal findings. Among the possibilities are power functions, just as
Stevens contended, but logarithmic functions are also possible. Only
one thing can be firmly established: if Stevens’s measurements are
reliable, all functions must belong to the same class, i.e., for example,
all functions are logarithmic if even one of them can be shown to have
this property.

¥ That at its ends the empirical curve is flatter than the logarithmic curve is to be
expected for purely technical reasons since there is an absolute lower threshold and an
upper limit for the impulse frequency. The latter results from the fact that, after transmit-
ting an impulse, a nerve cell has a phase of some 0,001 seconds during which it is unable 1o
transmit a further impulse.
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The theoretically appropriate way of measuring sensation is to use the
method of interval estimation where the experimental subject is asked to
order given stimulus intensities into equidistant categories or to produce
increases in stimulus intensity that appear to be subjectively equal. The
experiments carried out in this way confirm the hypothesis of logarith-
mic sensation functions, i.e., Fechner’s law. If the results of these
experiments as well as those achieved by Stevens are accepted, then only
one conclusion is possible: even for all continua examined by Stevens
there are logarithmic sensation functions and, in particular, there is a
logarithmic sensation function for numbers.

In addition to the results from interval estimation there is further
evidence in support of Fechner’s law. This evidence is provided in
neurological measurements of the relationship between stimulus inten-
sity and the frequency of electrical impulses in nerve fibers. The results
of these measurements are that impulse frequency is a logarithmic
function of stimulus intensity.

1.4. The Common Basis: Weber’s Relativity Law

‘In observando discrimine rerum inter se comparatarum non differen-
tiam rerum, sed rationem differentiae ad magnitudinem rerum inter se
comparatarum percipimus.’

These are the words by which E.H. Weser (1834, p. 172)* himself
generalizes his theory of thresholds. They form the common basis of the
approaches ol Bernoulli, Fechner, and Stevens, for in all these ap-
proaches it is assumed that men face relative rather than absolute
changes in stimulus intensities. Equal relative changes are equally per-
ceptible, equally intensive, or equally significant. Whether on the
psychological continuum, as with Bernoulli and Fechner, equal dif-
ferences in sensations or, as with Stevens, equal ratios of sensations are
perceived as equally significant*! or whether, as with Weber, there is no
functional relationship between stimulus intensity and sensation at all,
does not matter very much. Weber’s relativity law is the common basis
of all of the above approaches and it is confirmed by everyday observa-
tions. From now on, when the term Weber’s law is used in this book, it
will refer to this meaning®,

40 Similarly Westr (1834, pp. 161 and 173).

41 Concerning the general interpretation of their laws cf. FEcHNER (1860 I, pp. 54-69)
and Stevens (1975, p. 18).

41The idea of a more fundamental relativity law underlying the laws of Weber and
Fechner was developed by WuwpT (1863, esp. pp. 65-76) and was taken up by WunDT
(1908, esp. pp. 629-645), GroTENFELD (1888), MEINONG (1896), and Lieps (1902; 1905,
pp. 231-287). From a desire 1o show that Weber's law is compatible with more than just
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We can detect an object in both bright and dim light, since the ratios
of light intensities on the retina are constant, and independently of its
distance, because it is the proportions of the retina picture that matter
and not its absolute magnitude. We perceive a melody independently of
the octave in which it is played and independently of the musician’s dis-
tance from us, since equal frequency ratios and equal ratios of sound
pressure are perceived as equal. Our sensory system has no difficulty in
steering a car through daily traffic although, in the course of its evolu-
tion, it only had to learn how to make our comparatively poorly equip-
ped bodies function. We live our luxurious lives as matter-of-factly as
our ancestors lived their much simpler ones. How could Niels Bohr
possibly have been able to explain atomic structure by a planetary model
if he had not thought in terms of magnitude ratios?

Weber’s relativity law is certainly not limited to the mere physiologi-
cal fact that, for simple physical stimuli, the impulse frequency in nerve
fibres is a logarithmic function of stimulus intensity. This is only one of
its multiple variates. The example of pitch sensation clarifies this point.
According to the theory of von Heimuortz (1869), which, after its
experimental verification by Garamgsos and Davis (1943) and its modifi-
cation by von Bekesy (1956), can be considered as valid®, sound
frequency is not, as one might suspect, transformed into a frequency of
nerve impulses. Rather, there are specific receptors for sound frequency
where the impulse frequency emitted from these receptors has the sole
task of transmitting sound pressure, according to a logarithmic law. The
fact that an impulse is transmitted by a fiber at all is associated with a
particular sound frequency in the central nervous system. But neverthe-
less, as we know, equal relative changes in sound frequency are per-
ceived as equally significant,

Evidence for a comprehensive relativity law, however, is primarily
provided by the empirical investigations into the perception of the
length of lines (Stevens, Eisler) or the number of equally dispersed dots
on a white card (Thurstone, Guilford). If equal ratios are perceived here
as equally significant the central nervous system must be carrying out an

the logarithmic function, rather than because the empirical facts required it, these authors
proposed the power function of sensation, occasionally even in its special version @ = |
(proportionality). The authors seem to have believed that, particularly when equal ratios
ol stimulus intensities bring about equal ratios of sensation intensities, a ‘purely psycho-
lagical' (Grotenfeld) explanation of the relativity law is needed. Cf. in this context the
axiomatic foundation of a comprehensive relation theory given by Krantz (1972).

401 1961 von Békésy was awarded the Nobel Prize for his model of the ear. He rejected
Helmholiz's conjecture that the membranes in the cochlea of the car vibrate according to
the frequencies heard, They are unable to vibrate since they are not under tension. Never-
Iheless, according to von Békésy the membranes are able to percieve specific frequencies,
or precisely: ranges of frequencies, just as von Helmholtz had conjectured.
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extremely complicated calculation process. The perception procedure
must be even more complex if we are concerned with imagined stimuli
rather than observed ones. As the success of the number-matching
method proves, Weber’s relativity law is valid even then.

Thus it turns out that our sensory apparatus is adapted quite generally
to relativity. This certainly is not by chance. The reason seems to be that
the information embodied in the stimuli produced by our environment
are encoded in a ratio language. Equal loudness ratios, equal light-
intensity ratios, or equal magitude ratios generally mean equal pieces of
information. It seems very plausible that an organism which developed
through an evolutionary optimizaton process taking millions and
millions of years, indeed millions of generations, has learned to decode
the ratio language by using its calculation capacity economically,
namely by neglecting the information about the absolute intensities and
concentrating instead on their ratios. We should accept this special
feature of our perception apparatus as a matter of fact and ask only
what it implies for the shape of the von Neumann-Morgenstern func-
tion.

2. Risk Preference and Weber’s Relativity Law

In order Lo take account of Weber's law the von Neumann-Morgen-
stern axioms are now extended by the following axiom.

Weak Relativity Axiom: Equal relative changes in wealth are equally
significant to the decision maker.

The axiom takes up the idea underlying Bernoulli’s relativity law but
formulates this idea in a way that is suggested by psychophysics. It gives
an appropriate description of reality if wealth can be considered as one
of the continua in Stevens’s system of power functions. This, for
example, is the case if, in number-matching experiments for wealth, it
can be demonstrated that the numbers people find on their balance
sheets and the numbers by which they estimate the magnitude of their
wealth are equal or proportional to one another, which is a weak
requirement.

It would be wrong to interpret the axiom as postulating that a utility-
of-wealth function can be calculated by adding up equal relative
changes in wealth. A fortiori, it does not require a logarithmic von
Neumann-Morgenstern function. On the other hand, of course, the
axiom does not exclude a logarithmic, and thus cardinal, utility-of-
wealth function. The overwhelming empirical evidence in favor of a
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logarithmic system of sensation functions underlying Stevens’s empiri-
cal findings actually suggests such a function. In the multiperiod
approach developed in section IV B we shall therefore make use of
Fechner’s law. In this chapter, however, reference to a logarithmic
utility function will only be made for the sake of comparison. The
analysis as such does not rely on more than the weak version of the
Relativity Axiom presented above.

2.1. The Relativity Law and the von Neumann-Morgenstern Function

The question is now which implications can be drawn from the Weak
Relativity Axiom for the shape of the von Neumann-Morgenstern
function. The measure for the intensity of insurance demand*, g=
Piax @/E(C), defined above can be usefully employed to find an answer.
Obviously, the Weak Relativity Axiom implies that the decision prob-
lem of an insurance purchaser stays unchanged if his initial wealth a, the
possible losses C, and the interest-augmented premium pgq all alter by
the same percentage, i.e., if a’=4a, C'=AC, and p’'q = Apg for all 1 > 0.
This in turn implies that the interest-augmented maximum premium he
is willing to pay changes by the same percentage: P q = APmaxd-
Hence, with

3 P;nuq s APmaxd
E(C’Y E(AC)

(30) gA? = const., A>0,

it turns out that the intensity of insurance demand stays constant. In
other words, the intensity of demand for an insurance of wealth is
independent of the size of wealth. The fact that py,,.qg and E(C") are
proportional to A implies that, because n’=ppq —E(C’), the subjec-
tive price of risk 7' is also proportional to A. Thus the general version of
Weber’s law brings about what, in the Pratt-Arrow terminology, is
called constant relative risk aversion or what PorLak (1970, p.121)
denoted by the term ‘weak homogeneity.’

From equation (5) it is already known that the constancy of the
intensity of demand for wealth insurance is an implication of the
logarithmic utility function favored by Bernoulli. Here the argument is
the other way round. Obviously the Relativity Axiom offers the
logarithmic utility function as one of the possibilities. The question,
however, is whether there are other suitable functions that are also com-
patible with the Relativity Axiom. Bernoulli’s mistake was that he by-
passed this question by identifying risk preferences and utility of non-

4 CF. eguation (11 C 17).
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random wealth. Equation (II C 14) and the Weak Relativity Axiom
imply that pLa..p =APmad =Aag — S(Aag — AC). Hence, the complete
class of von Neumann-Morgenstern functions that are compatible with
a constancy of g is characterized by a linear homogeneity in the certainty
equivalent S(V) =U "{E[U(V)]}:

(E3)) AUHEU(V)} = U H{EUMAV)]}.

This aspect allows us to make use of a theorem by Aczel® (1966,
pp. 151-153) according to which the enly strictly monotonically in-
creasing®® functions U(v) that satisfy this requirement are:

% @+0, v=>0,
6 =it
(Also strictly positive linear transformations are admissible.)

That these functions, which from now on will be called Weber func-
tions, are implied by the assumption of constant relative risk aversion
has already been shown by Pratt (1964) and Arrow (1965). These
authors defined the value of the negative elasticity of marginal utility

U”(v)
(33) (V) = —Ayrwye— — m U,
that was used above as a measure of curvature*’, as a measure of local
relative risk aversion. By using this measure, which in the present case
turns out to be constant, the von Neumann-Morgenstern function can
be written as

—g)ptt =8 # *1,
(34) Ulv) = [{] e)v or &
Inv for £=1.
(Note that the previous assumption g > 1 implies £ >0.) For the certainty
equivalents we then have

E{VI—E}IK(I—-::'.I’ £+1,

B ARGl

45 The suggestion for this theorem was given to me by 1. Straufl. The theorem has
already been used in chapter 11 D 2.1.2 in connection with the Krelle-Schneider criterion,

# This is necessary because of the Axiom of Non-Saturation.

47 See equation (26).
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where the v,’s are the possible end-of-period wealth variates and the w;’s
the corresponding probabilities®®, That these certainty equivalents in
fact are linear homogeneous could easily be shown.

It is worth noting that the functions described in (34) include not only
the Bernoulli-Fechner function (2=1) and Stevens’s power function
(e< 1), but also a more curved type (> 1). Examples for all these types
are illustrated in Figure 5.

U (v) D=<g=1

=]

1 c=1 n

Figure 5

Since we limited our attention to the case of risk aversion, i.e., >0,
the figure only shows concave functions. In the case € = 0 the function
(1—g)u!' 8 describes a ray through the origin and in the case ¢ <0 it
gives a convex curve that starts horizontally at the origin.

Despite Aczél’s theorem, it might nevertheless be thought that there is
yet another way of combining the Weak Relativity Axiom with the von
Neumann-Morgenstern axioms. What about defining the von Neu-
mann-Morgenstern function over relative (v/ag) rather than over
absolute end-of-period wealth**? This was the way chosen in principle
by DomAr and MUSGRAVE (1944, esp. p.402), TornQvisT (1945, esp.
p. 233), and MarkowiTz (1952b, esp. p. 155). The certainty equivalent

48 For a continuous density Function the certainty equivalent is in the case &= 1:

S(V) = el ftutinvdy

49 The following argument can equally well be based on the initial wealth not augmented
by interest.
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of standardized end-of-period wealth, according to approaches of this
type, would be S(V/ag) and hence the non-standardized certainty
equivalent would be agS(V/aq). Since the latter expression is a linear
homogeneous function of ¥ and ag, the relationship

AV
| et )
> Pmaxq g APmaxd = g “ Aag
E(C") E(i1C) AE(C)

(36) gA’

would ensure that each arbitrarily given utility function leads to a
constancy in the intensity of insurance demand. Even the quadratic
function criticized by Hicks*® would lose the implausible property of
increasing absolute risk aversion. Unfortunately, however, these
approaches are not admissible since they contradict the Axiom of
Ordering. Consider the case of insurance demand and assume that in the
beginning of a period the potential insurance buyer receives a gift of
amount x/g and is told at the same time that each possible loss,
including the ‘loss’ of size zero, increases by the amount x. If we ask the
decision maker for the change in the certainty equivalent of his end-of-
period wealth distribution without insurance we get the uncomprehend-
ing answer that, obviously, there is no change since the end-of-period
wealth distribution is unaffected by these manipulations. The answer
satisfies the Axiom of Ordering and requires that

ag—LCY aq+x—(C+x)
(37) aqs( = )—(aq+x}5( e )

Since in the case x =+ 0 this equation obviously can only be satisfied if
S(.) is linear homogeneous, we are back to the functions listed in (34)
and to these alone! Standardizing the end-of-period wealth distribution
thus does not increase the set of von Neumann-Morgenstern functions
compatible with the Weak Relativity Axiom®'.

A clear interpretation of our preference hypothesis can be obtained
by following KreLLE (1968, pp. 144-147)*2 and splitting up U(v) into a
utility function u(v) for non-random wealth and a specific risk pre-
ference function @(v) such that U(v)=ep[w(v)]. If the psychophysical

S, footnote 17 in chapter 11 D,

51 Similar remarks apply to TsianG's (1972, p. 358) suggestion of adapting the utility
function to the decision maker’s expected wealth. Cf. our criticism of this suggestion at
the end of section 11 D 2.2.2,

STCE, ch. 1 C LS.
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sensation function of wealth is identified with the utility function u(v),
then

(38) u(v)y=Inu

and hence the specific risk preference function for evaluating prob-
ability distributions of wtility must be

m {1 =) .
(39) i) = I(! £)e s Bl
u, e=1,
to ensure that a combination of both functions yields (34).

Since its application by Freunp (1956), the function (1 —g)e!! —#¥,
&£+ 1, is known as a von Neumann-Morgenstern function on the objec-
tive continuum (wealth) if & is replaced by v. It is convex if £ <1 and
concave if £>1. Hence the Weber functions imply either risk aversion
or risk loving on the subjective continuum depending on whether
relative risk aversion on the objective continuum exceeds or falls short
of unity. In the case & = 1, the specific risk preference function is linear
and so the decision maker is risk neutral on the subjective continuum.
The logarithmic function i1s not modified in this case but its curvature is
sufficient to produce risk aversion on the objective continuum.

There is another interesting aspect of Freund’s function that can
easily be seen by calculating a certainty equivalent utility from the
approach

(40) (1—g)el OS] = F[(1 —g)e!! )]
such that

InE[(1 —g)e!! ~ 94 —1n(1 —&)

(41) Sfu(V)] =
l—¢

5 For example we have
(1 —g)ell —eitnu= (] — g){elntyl-£={] —g)p!-&

Note that in the case £ + | the utility function u(v) is defined up to an additive constant
while of course, as we know, (1—¢g)et! —&luv) i5 defined up to a strictly positive linear
transformation, It is possible 1o write

max E[(1 —g)es+ bl -eulv)] = pamax Ef(1 — £)eb(l - wiv)],

but in this expression ‘b’ cannot be taken to the front of the expectation operator. To be
able to interpret £ as a measure of absolute risk aversion on the subjective continuum we
set b=1.
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If here all possible utility levels are increased by the amount x we have

(42) S[u(V)+x) =x+S[u(¥)],
or, equivalently,
(43) Elu(V)+x] —S[u(V)+x] = E[u(V)] — S[u(V)].

Equation (43) shows a subjective price of risk expressed in terms of
utility before and after the shift in utility. Since this price is obviously
independent of the shift, the Weber functions (34) imply not only con-
stant relative risk aversion on the objective continuum but also constant
absolute risk aversion on the subjective continuum?*,

Despite all formal similarities, Freund’s utility function U(v) = —e #
as applied to the objective continuum is not compatible with the Weber
functions. Freund’s function exhibits constant absolute risk aversion on
the objective continuum, that is, a wealth independence of absolute risk
aversion®. In this respect, it is the opposite of the Weber functions that,
as will be spelled out in more detail below, imply a particular wealth
dependence of absolute risk aversion and thereby supplement the sub-
jective influence on risk evaluation by an objective one.

In the next section A 2.2 the implications our preference hypothesis
has for the shape of the indifference curves in a (u, o) diagram will be
examined and, for the sake of comparison, the way Freund's hypothesis
appears in this diagram will be considered too. Later, in section A 2.3,
there will be an opportunity to investigate the behavioral implications of
the two rival hypotheses further.

2.2. The Relativity Law in the (u, o) Diagram

As we know, the shape of indifference curves in a (u, o) diagram can-
not be seen independently of an underlying von Neumann-Morgenstern
function. Thus the task of this section is to represent the Weber func-
tions listed in (34). Of course the indifference curves exhibit the proper-
ties that have already been derived, in particular the slope of zero at the
ordinate® and, in the case of linear distribution classes, the over-all con-
vexity®’ caused by risk aversion.

S4CF, equation (I1 C 5) and the definition of constani absolute risk aversion in chapter
1 D2.23.

35 The postulate of wealth independence of risk aversion is the essence of PFaNzAaGL's
(1959a, p. 39; 1959b, p. 288) Consistency Axiom. Hence, Weber's relativity law in connee-
tion with Fechner's law implies the validity of the Consistency Axiom on the subjective
continuum,

6 CF. chapter 11 D 2.2.3 and 1l D 2,3,

STCT, chapter 11 D 2.3,
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These properties, as well as others that will be derived in this section,
are, however, subject to the constraint that the range over which the
utility function is defined includes the ranges of dispersion of the
probability distributions considered. This condition implies that the
probability distributions are limited to the positive half of the wealth
axis, if € <1 with and if £ = 1 without the origin. For the case of a linear
distribution class, it is therefore required that

(44) u—kol”to, ie. pi”tke, i el>!1,
= = -

where —k is the highest lower bound of the standardized random vari-
able® Z=(V—u)/o. How the indifference curves are shaped if the
probability distributions also extend over the negative half of the wealth
axis is discussed in section B.

For small standard deviations and arbitrary distribution classes it is
easy to calculate the slope of the pseudo indifference curves in the (x4, @)
diagram by referring to equation (II D 51). If, in this equation, the
derivative U" is replaced by

(@5) U (1) = 5 U () — = U”(),
u 7

an expression that follows from a differentiation of the Weber functions
(34), then, with a few steps, we reach

2.2

d

{46} _P: ~ 1 HE *
da Ui, ) ] +_(£) {£+£E}

2 \

According to this formula the slope of the pseudo indifference curves is
constant as long as the coefficient of variation (/1) of the wealth distri-
bution is constant. Since this is the case on rays through the origin, (46)
implies a homothetic pseudo indifference-curve system where the single
indifference curves can be constructed from one another by a projection
through the origin.

Concerning the degree of approximation we may now revert (o the
examples calculated in section II D 2.2.2. There it was shown that the
degree of approximation is a function of the coefficient of variation a/u

BCT. Figure 7 in chapter 11 B and equation (I1 A 14},
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~ if the set of linear distribution classes the decision maker thinks pos-
sible is independent of the expected level of wealth and

— if the decision maker wants ta he able at least to distinguish between
distributions whose relative difference in standard deviations exceeds
some critical level.

Hence, in the (y, o) diagram, points of equal degrees of approximation
lie on rays through the origin as is illustrated by the shaded area in
Figure 6.

Provided that u > ko, the result of a homothetic indifference-curve
system can be confirmed for farge standard deviations under a linear
distribution class. Since (34) gives a marginal utility function of the type

(47) U'(v)=v"*,

which is defined up to a multiplication with a strictly positive constant,
equation (II D 60) can be written as

du
da

_ _ElZ(u+oZ)]
Uip, a) E[{H + Jz]_'ﬁ]

 E[z(2+2)]
(4 +2)"]

which again indicates a homothetic system of indifference curves.

The indifference-curve system illustrated in Figure 6 shows the
derived properties. Because of the constraint (44), the indifference
curves are not plotted below the line 4 = ko. The way they approach this
line is also left open.

A property worth noting is that, for each point above or to the left of
the line 4 = ka, the indifference-curve slope must be smaller than that of
the corresponding ray through the origin:

(48)

du U
49 e £,
(49) P S

<
L, )

This can easily been shown for continuous density functions £ (z;0, 1) if
(48) is written in the form

=

au — —fk zE(z)dz

50
(30) &2

i, a)
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where use is made of the standardized weight factor

= I i
,{,_{‘.,0,1}(5 +z)

U{z 0, u( +z) S

Clearly (50) implies dyﬁdﬂ*m < k. Now, for points above the border line
= ka it holds that k < u/a. Thus (49) is obvious.

Figure 7 is confined to the case of risk aversion (g > 0). Of course
under risk neutrality (e=0) and risk loving (£<0) the indifference
curves would be linear or concave. Rather than studying these irrelevant
cases we would do better to find out how the degree of risk aversion
affects the shapes of the indifference curves. Differentiating (46) for &

o

we have
a L fa
da|u E I_? FE
ciliad B Oy e

de o 1(ay 1]3 “
i [1+2(u>{£+£}

This expression shows that in the case of small coefficients of varia-
tion, i.e., when the degree of approximation is particularly good,
an increase in the degree of risk aversion raises the indifference-curve
slope. This result can be restated by referring to expressions (50) and
(51). There, an increase in & shifts the part

—£
(5+2)
o
(5+2)']
a
of the weight factor £(z) towards lower values of z such that the average

z gets smaller and hence dpfdnh_,-m o larger. A more precise analysis is
given in appendix | to this chapter. As expected, the plausible result is

(51) {(z) =

Vz

(52)

E

PLC
(53) dolvwan| Lo 9,
de & M

i

A homothetic indifference-curve system of the kind described above
was postulated by Hicks (1967, p. 114). He called it the standard case
‘from which there might be a divergence, in practical experience, in
either direction’. StiGLiTZ (1969a) used it for the sake of comparison and
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Erer (1971, pp. 112 1.) tried to depict the Hicksian postulate by assum-
ing d;ffdﬂumg:,:.ﬁam an expression that approximates our formula
(46) for o/u— 0°?. None of the three authors showed its relationship to
the von Neumann-Morgenstern function. Scuneeweiss (1977a, p. 201 in
connection with p. 87) and Pye (1967, p. 115), however, stated that the
functions (34) produce a homothetic indifference-curve system. (Pye did
not consider Inv.) The homothetic indifference-curve system is implicit
in FisHeRr's (1906, pp. 408 f.) hypothesis that the subjective significance
of risk depends on the coefficient of variation (g/u) of the wealth distri-
bution. It is implicit also in the certainty equivalent [l — a(g/u)] that
was used by Palander (1957)% and shown by Macnusson (1969,
pp. 245-247) to approximate the logarithmic utility function in the case
where®! a=1/2. Apart from these references, however, almost all the
rest of the literature making use of the (u, o) approach does not refer to
the homothetic indifference curve system. In most cases the indifference
curves are the concentric circles® that can be derived from quadratic
utility, although the authors are usually shrewd enough to forgo the
plotting of these circles in a diagram.

For a comparison with the indifference curves following from
Weber's law (Figure 6), Figure 7 shows those following from the hypo-
thesis of constant absolute risk aversion. This preference hypothesis is
implied by Freunp's utility function

(54) Uv)=—e*, B>0,

which, for the subjective continuum, was discussed above in the general
form (1 —&)e'' ~#% That Freund’s function in turn is the only one com-
patible with constant absolute risk aversion follows from theorems by
PranzacL (1959a, pp. 39-41, 55-57; 1959b, pp. 288-292), PratT (1964,
p. 130), and Scuneeweiss (1967a, pp. 85-87).

Analogously to (46), for small standard deviations and arbitrary dis-
tribution classes we have from (II D 51):

dut fa
(55) o gt =
do |vga) o B0’
2

#For this reason it is possible to calculate from (46) the approximation

2
S{w}w'/l—:%

for the certainty equivalent in the case of small dispersions.

60 Cited according to Macnusson (1969, p. 36).

81 The approximation for the certainty equivalent given in fn. 59 coincides for £=1
{logarithmic case) and o/u — 0 with the Palander-Magnusson formula.

62Cf. chapter 11 D 2.1.3.
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Under the same assumptions about the degree of precision and the set of
possible linear classes as made above in connection with formula (46) we
now infer from the examples calculated in section IT D 2.2.2 that points
of equal degree of approximation are situated on parallels to the
ordinate. In Figure 7 such a parallel is illustrated by the right-hand
border of the shaded area.

Analogously to (48), for large standard deviations under a linear dis-
tribution class we have from (11 D 60):

(56) o O L on s
do lyge  EleFir+o2)]
_ E[ZBeP?]
~ E[feZ]

As would be expected, in both cases the level of expected wealth has
no influence on the indifference-curve slope. In the case of Freund’s
function the indifference curves thus can be transformed into one
another by parallel shifts along the ordinate.

It can easily be checked that the parameter ffin Freund’s function (54)
coincides with the Pratt-Arrow measure of absolute risk aversion as
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defined in equation (11 D 56). Therefore, in the case of large standard
deviations, the result of parallel indifference curves can also be achieved
directly from the general formula (11 D) 64) that relates the wealth depen-
dence of the indifference-curve slopes to the wealth dependence of local
absolute risk aversion.

2.3. Implications for the Intensity of Insurance Demand

The preference hypothesis derived from Weber’s law allows for two
factors that influence the subjective price of risk n(¥) or the intensity of
insurance demand® g = [n(ag — C) = E(C)]/E(C): the decision maker’s
subjective risk preference as measured by the parameter £ and his objec-
tive wealth a. Thus, in a certain sense, our hypothesis provides a
synthesis between Bernoulli’s hypothesis according to which onrly wealth
explains differences in risk aversion and Freund’s hypothesis criticized
e.g., by KreLLi (1957, p. 676), where only subjective factors are allowed
to influence risk aversion.

2.3.1. The Influence of Subjective Risk Aversion

An obvious conjecture can be made concerning this influence®. The
higher &, the higher the intensity of insurance demand should be. Indeed
this conjecture is correct. According to (52) and (53), when & rises, the
indifference-curve slope gets steeper on any given ray through the
origin. Hence the vertical distance 7 between a point (u* %), 0* >0,
and the point where the corresponding indifference curve enters the
ordinate rises. Formally, because the indifference-curve slope is a func-
tion of the type s(u/a, £), 5, >0, we have

a*/u®
(37) n= [ s(xe)dx
4]
and hence
dn dg
58 —,—>0.
(58) de ds}

It should be noted that this result holds for any given probability distri-
bution that is in the admissible range specified in the beginning of

81CF, chapter I1 C 1.3.

64 Because of its implications for the subjective price of risk in the case of small dis-
persions, PRATT (1964) and Arrow (1965) have chosen the parameter & to measure subjec-
tive risk aversion. CI. the role of the absolute risk aversion measure f = £/u in equations
(1L I 55) and (11 D 56). That & has the same relevance for large risks is plausible but not
self-evident.
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section 2.2 because, for any such probability distribution, a particular
indifference-curve system can be constructed. Constraints concerning
the class of admissible distributions only become relevant if two genuine
distributions are to be compared, they are not relevant if, as in the
present case, a genuine distribution is compared with a non-random
level of wealth.

2.3.2. The Influence of Wealth

To understand the relationship between wealth and risk evaluation
the preference structure following from Weber’s law is compared with
the one that Freund modelled with (54).

It is known that, according to the Weak Relativity Axiom, a propor-
tional extension and shift of the end-of-period wealth distribution leads
to a proportional increase in the subjective price of risk. Moreover it is
clear that under the hypothesis of constant absolute risk aversion an
increase in initial wealth, given the distribution of period income
(o = const.), does not affect the price of risk.

The first question is addressed to the preference structure according
to Weber’s law. How does the subjective price of risk (7) change under
an increase in initial wealth (&) given the distribution of period income
or, more pointedly, how does the intensity of demand for an insurance
of given risk change if wealth is rising?

The answer, that in a different form has been given by PraTT (1964,
pp. 130f.) and Mossin (1968, pp. 555f.), can easily be found from®
Figure 8. There the points A’, B’, and C" are constructed by a projection
through the origin from A4, B, and C and thus n'/n=0A"70A =
OB’/OB =0C'/0OC, Moving, for a given @, from B to B” we find that n
changes to n”. Of course n” < n’, but we find in addition that n” < . At
all points on the curve segment 4B, except point A, the slope is higher
than at the corresponding points vertically above them in the segment
A’B", Hence the integration [ s(u/x, €)dx implies n” < m or generally

dn dg

59 4
(59) da da

<0, a>0.

The reason the indifference-curve slope is a falling function of u is that,
according to (47) and (49), points of equal slope are situated on a ray
through the origin and that the indifference curves are convex according
to the proof given in chapter 11 D 2.3. Thus Weber’s law implies that the

65 The prool given here is no less general than the one given by Pratt and Mossin, since it
holds for any shape of the probability distribution as long as its range is covered by the
riunge over which the utility function is defined. The reason is that B and B' belong to the
same linear class.
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o o

Figure 8

intensity of demand for an insurance of given risk is falling when wealth
is rising.

The result shows that the hypothesis of decreasing absolute risk
aversion is an implication of Weber’s law. In modern literature on risk
theory the hypothesis is accepted as being ‘supported by everyday
observation’ (Arrow (1965, p. 35)) and ‘intuitively appealing’ (BICKSLER
(1974, p. 4)). BernourLt (1738, §3 and §15) had already recognized that
decreasing absolute risk aversion is an implication of his logarithmic
utility function, and although Fisker (1906, p. 277) did not use the
expected-utility approach he, too, argued in favor of this hypothesis.
Among insurance practitioners, finally, the hypothesis is generally
taken for granted®: the fact that nowadays insurance is not bought for
umbrellas because comparatively small risks are involved is a frequently
cited example.

In chapter II D 2.2.3 it was shown that decreasing absolute risk
aversion implies a preference for right skewed distributions®’. It is worth
noting that with the present discussion this particular preference can be
traced back to Weber’s law.

66Cf e.g., FarNy (1961, p.151). In insurance theory the hypothesis of decreasing
ahsolute risk aversion is not only considered plausible for the insurance purchaser but also
for the insurance company. See Herten (1973, p. 192).

67, in particular the remarks after equation (11 D 58).
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In their experiments on subjective risk preferences MosSTELLER and
NoGek (1951, pp. 399f.) observed the, to them disturbing, fact that the
experimental subject’s risk aversion is dependent on the ‘amount of
money he has on hand’. This phenomenon, too, is explained by Weber’s
law®®,

To complete the comparison between the two rival preference hypo-
theses we now investigate the hypothesis of constant absolute risk
aversion by asking, how the subjective price of risk changes when the
end-of-period wealth distribution undergoes a proportional extension
and shift or, alternatively, how the intensity of demand for wealth
insurance changes if wealth is rising. The question may gasily be
answered with the aid of Figure 8, if we interpret an indifference curve
as the graph of a function n(a) that is defined up to a constant S(V) that
measures the level at which this graph enters the ordinate. Obviously,
because of the convexity of the indifference curves, the subjective price
of risk increases more than proportionally with the standard deviation.
Because of the wealth independence of the shapes of the indifference
curves this result continues to hold if the standard deviation o/ stays
constant. Hence, with an increase in wealth, the intensity of demand for
wealth insurance rises. This conclusion is in striking contrast to the
Weak Relativity Axiom and may thus be used for an empirical discrimi-
nation between the two rival hypotheses.

2.4. Result

Axioms of rational decision making under risk naturally leave sub-
stantial scope for differences in individual behavior. This scope follows
from the use of general assumptions, but at the same time leads to
empty conclusions. Combining Weber’s relativity law, which is safely
founded in a large body of psychophysical experimental work, with the
von Neumann-Morgenstern utility theory, we were able to reduce the
scope substantially. A number of interesting conclusions emerge.

Since the von Neumann-Morgenstern function must be such that it
implies a linear homogeneity in the certainty equivalent U~! {E[UV)]},
only the utility functions

(1-g)v'~% e=+1,
Inw, £=1,

Ulv) = [
are possible where ¢ is the absolute value of the elasticity of marginal
utility, that is, the Pratt-Arrow measure of the degree of relative risk

%8 MosTELLER and NoGee (1951, p. 400) conjectured that the utility function changes
with wealth. Cf. the ahave discussion of equations (36) and (37).
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aversion. For almost arbitrary distribution classes but small dispersions,
these functions imply a homothetic indifference-curve system in the
(4, o) diagram. The quality of approximation in this diagram is a func-
tion of the coefficient of variation ¢/u of the end-of-period wealth dis-
tribution. For distributions from a linear class whose standardized
distribution to the left is bounded at z= —k there exist indifference
curves in the (x4 o) diagram in the range where g/ > k. These curves
are an exact representation of a von Neumann-Morgenstern function:
they are homothetic, convex, and enter the ordinate perpendicularly.
Important implications for risk evaluation are that the intensity of
insurance demand

- rises with risk aversion as measured by ¢,
- is independent of wealth in the case of wealth insurance,
- decreases with a rise in wealth if the risk to be insured is given.

Section B
The Broos Rule

In the preceding analysis it was assumed that the range of dispersion
of a probability distribution to be evaluated does not exceed the range
over which the Weber functions (A 34) are defined. To avoid the pos-
sibility of negative variates of wealth, distributions bounded to the left
at v =pu—ko were excluded when u/a<k, e<I1, and when u/c =k,
g = 1. Moreover, distributions not bounded to the left were generally
disregarded.

This exclusion seems very restrictive since among the ones it rules out
is the normal distribution which, because of its approximation property
for sum variables, has a significant practical relevance. On the other
hand, it should not be forgotten that such an approximation, though
useful, has its limitations. However similar the distributions that occur
in reality seem to be to the normal distribution, in at least one respect
there is a significant difference: actual wealth cannot become negative,
because, quite clearly, no one can lose more than he has. This fact is
graphically stated in the phrase ‘you can’t get blood out of a stone’ or,
to coin a word, in the ‘Broos rule’. It is true that there are many people
who burden themselves with more debt than they can ever hope to repay
in their lifetimes, i.e., people whose economic balance sheets, including
human capital, indicate negative wealth. However, since the debtor’s
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prison has been abolished, the fact that part of the debt is not redeem-
able does not worry them'+33,

Let V" denote the actual or ner distribution of wealth and let V¥ denote
the balance-sheet or gross distribution of wealth. Then the BrLoos rule is
() - [P', V=0,

g, ¥F=0.

Given the Weber functions this relationship implies a complete pre-
ference ordering over gross distributions whose properties will be
studied in what follows. It will be useful to carry out this study
separately for the cases of weak (e < 1) and strong (g < 1) risk aversion,
since, in the first case the utility function is bounded from below, while
in the second it is not.

1. The Complete Preference Ordering under Weak Risk Aversion
(0<e<1). The True Reason for Risk Loving

1.1. The Derived Utility Function for Gross Wealth Distributions

Using (1) and letting the Weber functions (A 34) be denoted by &/"(.)
we can construct the following derived utility function U(.):

Fiu)=up'"% u=0,
(2) Ulv) = { o
vty U@ =0, u=0,
Uw)=(1—¢)v® and U"(v)=—-e(l1-&)v 12, jif p>0,
and with

U'(v) = U"(v) =0, if v<0.

I'Thus a formal test developed by ScuneEwEss (1964; 1967a, pp. 129-160) for finding
out the intersection of preference structures that on the class of normal distributions, may
just as well be represenied in a {u, o) diagram as by means of a von Meumann-Morgen-
stern function cannot be applied. One of the conditions for the application of this test
lim, ,_. U(v)e ®"> —a, o = const, > 0, cf. (1967a, p. 131), is not satisfied.

1 Recall the definition of wealth given at the beginning of this chapter. According to this
definition a complete loss of wealth means that, during the whole of his life, the decision
maker still retains enough for subsistence minimum consumption. Because of the limits to
attachment usuval in countries with a well-developed law system this seems (0 be a realistic
assumption,

IThe significance of a lower boundary of wealth for the evaluation of risks was also
pointed out by SEinL (1972, pp. 443-445). Seid] did not attempt to integrate this boundary
into a férmal decision theoretic approach. The following analysis extends the one given in
Sinn (1982) by considering arbitrary distribution classes rather than binary distributions
only.
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Since the derived utility function U(.) evaluates the gross distribution ¥
in exactly the same way as the original function U/7(. ) evaluates the net
distribution " we have

(3 E[UW] =E[UV")]

for all elements of the opportunity set.

L/(.) is nothing more then an auxiliary mathematical construct that
draws all its information from U/"(.). Thus we should not be bothered
by the fact that U(v) does not satisfy the Non-Saturation Axiom for
p=<0. U"(v") is compatible with this axiom for all admissible values of
p" and that is sufficient.

By analogy with Figure 10 in section II C 1.2, the following Figure 9
demonstrates the implications of the BLoos rule for the intensity of in-

I 0
is large enough to allow for negative gross wealth, a case that is particu-
larly relevant in the case of liability insurance.

surance demand if, because of / >ag, the loss distribution C = (W = w)

Ule)

Q-=zg=1
ol
P
ag—¢ 0 E(V)S(V) aq v
l--w-—l'
—m( k)
| —
Proax 4
E(C)

Figure 9
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The remarkable aspect of this figure is that the BLoos rule implies a
kink in the derived utility function that destroys the over-all concavity
that is usually assumed. If the possible loss / is large enough, the
certainty equivalent S(V) exceeds the expected level of wealth so that the
subjective price of risk n(V’) is negative and the intensity of insurance
demand is smaller than one;

= pmatq
=)

(4) =T,

One implication for the case of liability insurance is obvious. Since
insurance companies have to demand a premium at least equal to the
expected indemnification payment®, it is preferable for the person
facing the liability risk to stay uninsured, although, concerning his sub-
jective preferences, he is a risk averter in the usual sense. The reason is
that, even without insurance, the person liable avoids part of the loss
which, of necessity, is borne by other parties sustaining the damage.
Insurance is not attractive since part of the premium that the buyer pays
benefits these other parties and not himself.

Apart from the insurance example that will be considered in more
detail later’, there are a number of other significant implications of the
Broos rule. For example, the rule suggests that, when choosing between
different techniques of production, a firm may well decide in favor of
extremely risky techniques that involve the possibility of losses far
exceeding the value of its equity, simply because a large part of these
losses would be borne by others. In this case, the implication of the
Broos rule that there will be negative external effects, which may result
in a substantial misallocation of resources, is straightforward. Another
implication that will also be discussed in detail, shows up in forward
speculation when speculators sell short on the futures market, where the
possible loss may greatly exceed the speculator’s wealth. According to
the Biroos rule, in this case it may well be rational for a risk averter,
when choosing between two contracts, to decide on the one with the
lower expected gain and the higher variance with respect to gross vari-
ables. The Broos rule may therefore explain why speculators, in parti-
cular, are often said to be risk lovers.

These remarks concerning the practical relevance of the kinked utility
function for evaluating gross wealth distributions should be enough for
the time being.

4Cf, chapter 11 C 1.2 and 1.3.
Sinchapter VC land V C 2.3,
SIn chapter V B 4,
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1.2. Indifference Curvesin the (u, @) Diagram for Linear Distribution
Classes

This section investigates the implications of the Broos rule for the
shape of the indifference curves in a (y, o) diagram in order to facilitate
an evaluation of distributions other than the binary distribution con-
sidered above. For the sake of simplicity, the analysis is confined to
probability distributions that are described by continuous density func-
tions’. Moreover we only consider distributions from the same arbitrary
linear class® with £(z;0,1)= fi(z) and Z=(V-u)/o or 2=(v—u)/a,
respectively, where z is a variate of the standardized random variable Z.
For the time being the distributions are assumed to be bounded to the
left at z = —k, k =oo, and to the right at =K, k <oo. It is assumed that
the density is finite except possibly for z =k.

This characterization of the linear distribution class has the following
immediate consequence. Above a ray through the origin u=—-FKa (cf.
Figure 10) there is a continuum of indifference curves. They all enter the
positive part of the u axis because each distribution, which brings about
strictly positive wealth levels with a probability greater than zero, has a
strictly positive certainty equivalent. Since the net distribution is
bounded at v =0, the lowest conceivable certainty equivalent is zero.
Below the border line u = — ko there is an indifference area. All distri-
butions whose mappings are in this area only extend over the negative
half of the wealth axis where U(v)=const. Thus these distributions
bring about a non-random net wealth level of zero and hence the
decision maker regards them as equal in value.

Because of the continuity of U(v) in the whole range —®@=v = + wx,
the indifference-curve slope can, in the usual way, be calculated by use
of equation (II D 60)°. An interesting question is whether the result of
homothetic indifference curves given by equation (III A 48) remains
valid. This question can be answered in the affirmative since the
equation U'(u+ az) = (1 —e)o tU'(z + u/a), that was implicitly used in

71f there are discrete distributions they may be approximated by a continuous one. CI.
footnote 2 in the introduction to chapter 11,

EThe method of local approximation can no longer be applied since the Weber
functions can only be developed into a polynomial down to 50% of the mean. Cf. chapter
11 D222,

¥The necesgary differentintion under the integral

IN- 3
5 A U+ o) dz

does not alter the formula despite the discontinuity in the marginal utility function at
u=0, Cf, appendix 3 to this chapter where, for another problem, the same mathematical
aspect shows up, Formula (5) would cease to hold only if U(u) were discontinuous.
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the derivation of (III A 48), not only holds for p+oz >0, but also for
u+az <0 since in this case, from (2), U'(u + az) =0. Thus the formula

1d E[ZU’ (% + z)]
v )

remains valid in the case of gross wealth distributions with negative
variates so that the indifference-curve system is also homothetic in the
range below or to the right of the curve u = ko (cf. Figures 6 and 10).
Over some range, the indifference curves plotted in Figure 10 have
negative slopes, which is a sign of risk loving behavior. This property is
alrcady necessitated by the fact that afl distributions with u/a > —k have
strictly positive certainty equivalents and is plausible in the light of the
convexity of the utility function brought about by the Broos rule.

du
) da

J | convex if
JA-k)=0 H=ko
and k—use |/ further properties:
sufficiently 1. homotheticity
small 2. smeoth indifference curves
3. slope always smaller than u/o
, and greater than —&
convey

= asymptote with
slope slope —k

concave if o is suffi-
ciently close to zero and
the distributions are
unimodal and not

left skewed
negative
1 slope
‘\ a
concave if
indifference E ciently small

area

Figure 10



B The Broos Rule 169

More precise information on the indifference-curve slope when u/o is
in the range —k < u/a <k can be gained by inspection of (5). According to
this expression, the slope is the negative of a weighted average of the pos-
sible variates of Z where the weightsare £(z)U"(z + u/a)/E[U"(Z + u/a)].
Obviously zero weights are attached to all z >k, since f; =0, and to all
z<—u/a, since U'(v)=0 for v<0. Hence —u/e<E(ZU")/E(U’) = k
and thus —k < du/do |y, -y = u/a. Although this information about the
indifference-curve slope is rather limited, it confirms the fact that, with
—k < u/e <0, there is a range where the slope is negative.

To obtain further information equation (5) is written in the explicit
form

T zf(2d —E](% + z)ncdz

d =it/
(6) Ef_:: - #.: U - !
o T pea-a(Lrz) @
—jifa a
Since!® lim, _,,  (z+u/g) ®=oo it is tempting to conjecture that the

weight for z = —u/o is dominating all others so that du/de |y, o) = n/c
if f.(=u/@) > 0. In the range —k < u/o < k. the indifference-curve system
would then be a set of rays through the origin. Appendix 2 shows this
conjecture to be wrong. (Substitute!! A Edﬂf{fﬂ'!uml o) HIG=Y, Z= W,
£=@.) As long as the assumption 0 < £ < | that underlies this section is
maintained we have

dy
40 |1y, )

)] c:-‘E—, if “£>-f and m}_f;(—i)::ﬂ.
a o

g

This result will hold a fortiori if f,(—u/a) = 0, perhaps because the con-
sidered type of distribution is multimodal or because'’ u/o >k, the
siluation analyzed in section A,

It is clear that the lower boundary —k of the slope will never be
reached when variates of Z in the range —u/o < z < k£ occur with strictly
positive probability. If, however, u/o —+—k then the range of z values
used for calculating E(ZU’) becomes even narrower. S0 we must

W0To distinguish limits from above and from below ‘+' or '~ are placed after the
variable denoting the limit.

1 In parts of the appendices different symhbols are used since the mathematical prob-
lems treated are considered in various contexts.

12This was shown in equations (A 49)-(A 51).
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generally conclude that!?

(8) du Sk i e

dﬂ Ulw, a) prie — =Kk dﬂ' Uy, @)

Hence, for u/o sufficiently small, the indifference curves are nearly
parallel to the lower boundary u = — ko of the range where indifference
curves exist.

In addition to the information about the slope of the inditference
curves, information about the curvature may be of interest. From
Tobin’s proof presented under point (2) in section I1 D 2.3 we know
that, in the range u/g >k, the indifference curves are strictly convex.
To find out about the curvature in the range —k < u/0 <k we differen-
tiate (5) with respect to p/a. The result of this calculation, carried out in
appendix 3, is:

4
) do U{pt.a_I:E{]—-E} -[ Iif;(_i)_“_r}f;(z}:l
d£ ﬁ —ula a
a u —(1+&) u  du
(ua_+z) dz(? z: tf_a U[y,a]) :

1>I>0, if j;(m—‘;i) =0,

. M
=0 b ﬂ(—?)}ﬂ,

oo > f1 >0,

Since f, &(1 —¢), and, because of (7), the terms in brackets behind the
integral are strictly positive and finite, so we only have to consider the
integral itself,

As shown in appendix 4, it is finite if, as assumed, 0 <e<1. (Sub-
stitute the integral for A and set u/a =y, z=w, f.(—u/o)—(1 - Niiz)=

131n the case of discrete probability distributions rather than continuous ones that can
be described by density functions, the slope may take on the value —F even for u/o = —F.
The sufficient condition for this case is that the variate z= — K obtains with positive
probability and that further variates in the range —u/eg <z <k are impossible. For a
binary distribution, this means that in the whole range below the line i = ke the indiffe-
rence curves have a slope of size —&. The discrete distributions and the corresponding
indifference-curve systems can be approximated by the use of continuous distributions as
closely as we wish.
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So(w), (1+¢&)=0.) Since the utility curve is kinked at v=0 the sus-
picion could arise that the indifference curves are also kinked some-
where, at least on the border line u = kg. The finiteness of the integral
allays this suspicion. The indifference curves are smooth everywhere.

Whether the indifference curves are convex, concave, or linear is
determined by the sign of the integral in (9). In the case y/o >k it is
negative because of f(—u/0) =0 and I" < 1; this restates the convexity
proved by Tobin. It is worth noting that the sign of the integral stays
negative even in the case k —u/c > 0, provided that this difference is
sufficiently small and provided that the density function has the
property f.(—k+) = f.(—k—). Thus the indifference curves stay convex in
the neighborhood of the line u = ko even for u/o < k. If, however, the
density function is ‘truncated’ so that f(—k+)>0 while f,(—k-) =0,
then immediately below this line there will be a concave segment
provided f,(—k+) is sufficiently large.

For a unimodal distribution class the integral is strictly positive if the
mode (M) is zero or negative for, in this case, f.(-M/g)-f.(z)>0
¥z >—M/o. Hence, for such a class, the indifference curves are
definitely concave if M/o is negative or sufficiently close to zero. In the
case of a right skewed or a symmetrical distribution where M = u, this
also means that there exists some x = const. >0 such that concavity is
ensured for all u/og <x. In the case of multimodal distributions, the
indifference curves may consist of various convex and concave seg-
ments. In this' case, concavity is only ensured when g/ is small enough
so that the highest mode is close enough to zero.

The simplest version of an indifference curve system that can nor-
mally be expected is shown in Figure 10. The properties that have been
derived are labelled.

Up to now, only distributions that are bounded to the left have been
considered. This does not seem unrealistic. In many practical problems
even the gross distribution of wealth in the sense of a balance sheet item
appears to have this property since the maximum loss is often limited to
capital ventured in a particular enterprise rather than to the decision
maker’s personal wealth. We should think here, for example, of forms
of speculation that tie up capital, of share holding, or of the participa-
tion in other limited-liability enterprises. On the other hand, there are a
number of decision problems like speculation by selling short or liability
insurance, where wealth distributions that disperse very widely to the
left have to be evaluated. These problems legitimate the consideration
of the limiting case of distributions that are unbounded to the left. In
addition, of course, the normal distribution creates some interest in this
case, although it must be admitted that there are hardly any problems
where the normal distribution approximates the left tails of the approp-
riate distributions particularly well.
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For k = o, the area of indifference curves where all variates of V are
positive no longer exists. For any ¢ >0 the BLoos rule affects the indif-
ference-curve slope. Clearly this aspect does not change those particular
conclusions, derived above for u/o <k, that were not confined to the
neighborhood of the 4 = ko line. Thus, the property of homotheticity
will continue to hold, and the indifference curves will be negatively
sloped and concave for u/g sufficiently small. The question remains,
however, of how the indifference curves are shaped in the neighborhood
of the ordinate. Are they still approaching the ordinate perpendicularly,
and if so, will there still be some range of convex indifference curves in
the neighborhood of the ordinate where the decision maker behaves as a
risk averter?

The first part of this question can easily be answered. Since, in the
present case 0 <¢< 1, numerator and denominator of (5) are finite!,
the discontinuous region of U’(v) at u=0 can be approximated by a
continuous marginal utility function as closely as we wish. In the limit as
¢ —~ 0, for a continuous marginal utility function, the numerator takes
on the value E(Z)U'(u) =0 and the denominator the value U’(u)'S:
moreover the weight of some given range of approximation around
v =0 vanishes'®, Thus, as before, the indifference curves are horizontal
at the ordinate:

(10) lim % =g
020 dO |y a)

"4 This followed, e.g., from the calculation of equation (6) in appendix 2.

'SCf. ScHNEEWEISS (19672, pp. 1281,

16 That removing the discontinuity has a negligible influence can be shown by using ex-
pression A in appendix 2. First, within equation (5) from the text above, the substitutions
y=uplo,z= w, ¢ = @are carried out, Then, the shape of the marginal utility curve is made
continuous in the interval from —y through —y + A by the use of a function riw) where

=pd A

§ Aom iz wydw= | fiiw)ix+ w)-Odw
)

is assumed, so that y in equation (9) of appendix 2 remains unchanged. This modification
changes the value of lim, .,. o by a finite amount. If before the modification A was
chosen so as to ensure that y is sufficiently close to unity, then, independently of this
modification, equations (11) and (3) of the appendix imply A =lim,.,. § where each
desired degree of approximation can be reached. But even if a very high degree of approxi-
mation is not desired, the subsequent taking of the limit y — os(g—0) implies that
lim.,. ¥ approaches unity and hence the question of whether or not the marginal utility
curve is continuous in the range from —¥ through —y + A turns out to be irrelevant as long
as0< @<, If @=1 then, because of equation (21) from the appendix, we always have
lim,-.,. y=0s50 that the above reasoning is no longer valid.
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The second question can be answered by reference to expression (9).
Obviously convexity prevails, despite the BLoos rule in operation, if, in
the limit as /g — oo, the integral (J) in (9) approaches a strictly negative
value. To find out whether this is the case, some formal analysis seems
necessary.

Assume that the prevailing linear distribution class has the property

(11) f2)>0, £(@=0, for z=-g,

where ¢ is some constant that is chosen sufficiently large, and let u/o =
g+x+y, 0<x<eo, (< y<oo. Moreover, write the integral in (9) in the
form
=

(12) f= | Ihe—x-»—-f@le+x+y+z)1*9dz

—e-x-y¥

+h(-e—x~-3) § (e+x+y+z)1+9dz

-@

Lt

- @) e+x+y+2y*odz,

=@
Then it is possible to derive a sufficient condition for the sign being
ncgative in the limit as p/g — 9¢. Obviously, by construction, it holds
that [ ¢ _ ...dz<0. Hence [is smaller than or equal to the sum of the
other two items on the right-hand side of (12).
Consider npow the inequality

{l +p) =
(13) (x—:—y) | £@)e+x+2) 0 0 dz
g

<| fe+x+y+z 194z
-

which follows from the facts that

(14) x+y{g+x+z}=g+x|y:z, if z=p,
+ -
(15) x-—x—y(9+x+zj}g+x+y+z, if z>-p,

and that (.)""*% is a strictly decreasing function. Utilizing (13), we
clearly have

(16) f<hl-e—x-y [ (e+x+y+2yU*9dz
-

~(1+8) =
= (?) | @) e+x+z)y 94z,
-
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Thus lim,,, .| <0 if the right-hand side of (16) becomes negative as
y—oo. This in turn is the case, if the first item on the right-hand
side vanishes ‘faster’ than the absolute value of the second. Since
ﬂi [ (0+x+y+2) "9 dz <0 the second term on the right-hand side
iy
of (16) will definitely dominate the first if

(17) lim f2C€ X1 _
yoo (x4 y)d+e
Equation (17) therefore is a sufficient condition for the indifference
curves being convex in the neighborhood of the ordinate.
As an example, consider the normal distribution where f,(z)=

(1/y/27)e~*"2. Here, with z——oce, the density vanishes faster than

e |22 or, equivalenty, with z=—(o+x+y) and y—+ o faster than
e l-e=x=»l72 _ p=l0+X)2g-172 Gince

E--_wz;,:x_' _}.)-{l-.*r.} L E'szﬁ* (1+ednix+y) — gl Fedimix 4 y)—pi2

this implies that the normal distribution meets condition (17), provided
that lim,_ . [(1 +&)In(x+y)—y/2] = —co. Obviously this is the case.
Hence, at least for the normal distribution and all distributions whose
densities on the left-hand side converge fastier, the indifference curves
are convex if, given u, & is chosen sufficiently small.

As a final problem in the analysis of distributions that extend over the
negative half of the wealth axis the role of the risk aversion parameter ¢
should be briefly considered. Here the result

4
(18) _dolvwa| . g
de .

that was previously achieved with (A 48) still prevails, since the
reasoning of appendix 1 is completely unchanged.

Thus we may summarize as follows. Although the subjective prefer-
ences of the decision maker exhibit risk aversion, albeit moderate
because of ¢ < 1, the BLoos rule produces risk loving behavior provided
the gross distribution extends widely enough over the negative half of
wealth axis.

In the case of a linear distribution class bounded to the left at u — ka,
k < oo, the indifference-curve system in the (g, o) diagram has the usual
properties in the range u/c > &, but, in the range u/o <k, the indif-
ference curves are negatively sloped and concave for u/o sufficiently
small. With £ as the upper boundary of the standardized random
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variable characterizing the distribution class, in the limit as u/c
approaches —k, the indifference-curve slope also approaches this value.

In the case of a linear distribution class unbounded to the left, despite
the Broos rule in operation, the indifference curves have the usual
properties in the neighborhood of the ordinate provided that, for
7z — —oo, the density converges at least as fast as that of a normal distri-
bution. For sufficiently small values of g/ the question of a bounded-
ness to the left is irrelevant for the shape of the indifference curves. As
with all distributions unbounded 1o the right, with the normal distribu-
tion the indifference curves approach vertical asymptotes for u/g suffi-
ciently small.

At any point in the (u, o) diagram the indifference-curve slope is a
rising function of the measure of relative risk aversion &.

The indifference-curve system is homothetic.

1.3. Critigue of the Subjectivist Foundation of Risk Preference

The explanation of risk loving behavior as given by the Broos rule is
at variance with traditional explanations of this behavior. It does not
have very much in common with a subjective inclination towards risk
except for the fact the utility function has to be bounded for v—0.
Figure 11 compares the utility curve (2) to the classical curves'’ sug-
gested by Torngvist (1945), Friepman and Savace (1948), and
Markowitz (1952b).

A common feature of the classical proposals is that the convex seg-
ments in the medium ranges of the curves are explained by the empirical
observation that, despite negative expected net gains, people participate
in gambling. Markowitz and Torngvist place the convex segment (o the
right of the initial wealth @ since the range of gambling seems to be
there. This assumption implies that there is no given utility-of-wealth
curve but that the positions of the curves are dependent on initial
wealth. Friedman and Savage argue that the convex segment should be
at medium levels of wealth since comparatively poor people seem to be
particularly interested in gambling'®.

I"Friedman and Savage call the argument of their utility curve “income'. Their
reasoning, however, describes a utility-of-wealth function better. Torngvist and
Markowitz assume that the position of the utility curve depends on the decision maker’s
initial wealth (o).

18 The authors unanimously explain the concave curve segments to the left of the convex
ranges with the preference for buying insurance. The right-hand concave segment is
explained by Friedman and Savage with the argument that people seem to have a prefer-
ence for diversifying prizes in gambling. From a more formal point of view Markowitz
and Torngvist, however, argue that the utility function is bounded from above 1o avoid
the St. Petersburg Paradox. With a similar argument Markowitz finally legitimates a
lower boundary to utility which produces a convex segment,
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Figure 11

The classical arguments for a convex segment in the utility function
are empirically doubtful, inconsistent, and imply irrational behavior
under risk. If Friedman and Savage are right, then the intensity of
insurance demand must be very low for people from the upper middle
class, and no one from this class would want to play roulette!, These
implausible implications could be removed by adopting the Torngvist-
Markowitz hypothesis that the total curve shifts with an increase in
wealth. However, as we know from the discussion of the Weak Rela-
tivity Axiom, this solution demands the high price of violating the
Axiom of Ordering®.

These problems suggest that the idea as such of deriving the shape of
the utility curve from gambling behavior is misleading. The short-
comings of this type of reasoning are very obvious in the light of some
peculiarities of gambling that are hardly compatible with the von
Neumann-Morgenstern axioms.

- First, 1t is necessary to mention the fun of observing complicated
game procedures which, as we know, is incompatible with the Axiom

19This comment also applies to Hakansson (1970b), Masson (1972), and AppeLBaus
and Ka7z (1981) who derive the Friedman-Savage wtility function from an intertemporal
opilimization approach with capital-market imperfections. For an extensive eriticism of
the Friedman-Savage utility function see Baiey, Ovson, and WonnacoTT (1980).

{0CK. in section A 2.1 the discussion centering around equations (A 36) and (A 37).
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of Ordering?'. This fun may explain why people participate in games
of chance, but it does not imply anything for the shape of the utility
function for serious economic decision making.

- Moreover there is a good case to be made for ALLais’s (1952, p. 132)
explanation of gambling, namely, that the stake is below a subjective
threshold while the prizes are beyond it. Again this argument has no
bearing on the kinds of economic decision making we are considering
in this book. Thresholds do not seem to be important in insurance
demand, portfolio choice, or specnlation.

- A related argument is that people are inclined to overestimate small,
but underestimate large, probabilities. This argument may also ex-
plain gambling since the probabilities of winning are usually very
small. At any rate, Yaar1 (1965) felt that an explanation of this sort
was needed since he was unable to detect the convex segment in the
utility function in his experimental work on risk preferences.

- Finally, doubts must in principle be raised about applying the von
Neumann-Morgenstern theory of rational behavior under risk. The
attempt by gamblers to outwit probability theory by their ‘crystal
ball’ strategies is surely a good example of irrational behavior. It
seems there is a good deal of wisdom in what Hicks (1962, p.793)
says>2 when comparing gambling with portfolio decisions: ‘They [the
portfolio decisions] are work; gambling is relaxation. To expect con-
sistency in gambling is futile, for gambling is a rest from consistency.’

Rather than trying to explain gambling behavior, it would be better to
try explaining types of risk loving behavior that have nothing to do with
the fun of gambling or thresholds in perception. Such behavior is to be
observed among people who are clever enough to discover what their
optimal decisions are.

Why is it that most people obviously have such a low preference for
automobile liability insurance that governments had to make this type
of insurance compulsory? Why is the entrepreneur, who is up to his ears
in debt, willing to risk everything on one morc attempt? Why do ship-
owners build their tankers like tin cans that break open at the slightest
impact and spew their oil into the sea, causing losses far greater than the
value of the tanker and its contents put together? In all such cases, there

21 [f the fun of gambling is independent of stakes and prizes and is merely added to
expected utility then Magrkowitz (1952b, pp. 157 [.) may be right in saying that a concave
utility function implies that ‘... when millionaires play together, they play for pennies’. If
however, the completely implausible assumption of independent utilities is removed then
it may well be possible that millionaires play with large stakes, even though in serious and
less pleasant economic decision problems their behavior exhibits risk aversion.

ZCF, also Hicks (1931, p. 181),
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is a particular lack of concern for very large negative variates of the
wealth distribution. The BLoos rule, as reflected in the derived utility
function, offers an explanation.

2. The Complete Indifference-Curve System in the Case of Strong
Risk Aversion (¢ = 1): The Implicit Lexicographic Ordering

In contrast to the case € < 1, it is now impossible to derive a complete
von Neumann-Morgenstern utility function for gross wealth similar to
(2), for £ = 1 means that the Weber functions (A 34) are unbounded at??
v =0: lim,_, U"(v) = —o». Nevertheless the BLoos rule remains valid. It
is a matter of indifference whether a person loses only his wealth or
whether in addition, he is burdened with a debt that he can never repay.
Either situation is a complete disaster.

We must thus conclude that at v=06=0 there is a lexicographic
critical wealth level so that a maximization of the survival probability
becomes the predominant aim:

(19) max Wiv = 0).

The fact that a combination of Weber’s law and the BrLoos rule
renders possible a lexicographic level of wealth just where 0 =0, is com-
patible with the general discussion of the theory of lexicograhic prefer-
ences given in chapter II B. In section 1.2 of that chapter we found that
a lexicographic critical wealth level, if it exists, is situated at 0= 0.

Given the information (19), for a linear distribution class it is possible
to construct pseudo indifference curves in the (u, o) diagram. Since the
geometrical locus of points with equal survival probability is defined by
the condition®

A
(20) T const.,

the pseudo indifference curves are rays through the origin; this is
illustrated in Figure 12.

However, the total area in the (4 o) diagram is not filled with pseudo
indifference curves, for the lower (k) and upper (k) boundaries of the

23'This property implies a constraint on the range where the Archimedes Axiom is valid.
The problem is taken up in the following section C 2.
MCf. equations (I1 B 5) and (I1 B 6).
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standardized distribution Z = (V — u) /o appear on the scene. This, too,
is shown by Figure 12.

From below, the area of pseudo indifference curves is bounded by the
ray through the origin 4 = —ko below which there is an indifference
area?’. The curve is of the same kind as that depicted in Figure 10 and
hence we do not have to elaborate upon it.

More important is the upper boundary u = kg, above which, in the
case of wealth distributions bounded to the left, there is the range of
substitutive indifference curves well known from Figure 6. If a choice
has to be made between distributions from this range, then of course the
predominant aim of maximizing the survival probability is irrelevant
since all of these distributions ensure survival.

In the discussion of Figure 6 the question of how the indifference
curves are shaped in the neighborhood of the curve u=ko was left
open. This question will now be considered so that the areas of normal
and pseudo indifference curves can be combined without a break. For
the case of a bounded utility function (0 <& < 1), it was shown that (cf.
equation (7)) dm’dﬂum o) <U/G S0 that the indifference curves
approach the line g = ko with a slope lower than k. In the present case
& =1 such a possibility is not excluded. Appendix 2, particularly with
equations (25)—(29), shows that, for density functions that at the left
continuously approach 0, i.c., that are characterized by f(—k+)=
f.(—k—=) =0, there are the following possibilities:

(21) lim FE
wla +k+ dex

[=ﬂfﬂ' if e=2,
Ui, o) {ﬂfﬂ if e<2.

(When using the appendix consider only the calculation of lim, ., B,
substitute du/de |y, ) according to (A 48) for B and set y=k, x=u/o,
G=¢g and w=2z.)

Thus, in the case of a comparatively weak risk aversion (g<2), it
stays true that the indifference curves approach the curve y = ko at an
angle. But if a stronger risk aversion (¢ =2) prevails, as is assumed in
Figure 12, then the indifference curves lie closely against the curve p =
ke It should be mentioned that this will occur even in the case 1 =& <2,
if a ‘truncated’ density function with f,(—k-)=0 and [f(-k+)>0
prevails. This follows from expressions (2)-(24) in appendix Z.

So far we have only considered the case of distributions bounded to
the left. For these distributions the practically relevant part of the (u, @)
diagram (u/o > —k) is divided into a substitutive and a lexicographic

I5CF, section B 1.1,
6 Cf. the remarks on equation (II D 52).
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n=ko

¢
K substitutive
range

lexicographic
range

range of A
indifference ~_|

-u. H=—ko
Figure 12

area. The difference when the distributions are, like the normal one,
unbounded to the left is immediately clear: the substitutive range dis-
appears completely,

For the case of weak risk aversion (0 < &£ < 1) we found that with suffi-
ciently small dispersions risk neutrality prevails so that the optimal
decision can be based on expected values alone. This rule is clearly
violated in the present case of strong risk aversion (¢ = 1). In the limit as
o —0 even the slightest increase in standard deviation has to be com-
pensated for by an infinite increase in the expected value. This implica-
tion appears highly artificial and suggests that the case ¢ =1 is not a
realistic one. On the other hand it should not be forgotten that not only
the net, but also the gross (= balance sheet) distributions of wealth are,
in practice, often constrained to the left because there are various forms
of limited liability in operation. Even the popular normal distribution
is, with respect to its left tail, usually not a good approximation of those
gross distributions among which economic decision makers have to
choose, Thus there might only be a few occasions where unbounded dis-
tributions can be observed.

However, regardless of whether or not the (u, &) diagram includes a
range of substitutive indifference curves, the implications of the lexico-
graphic range as such are not very plausible. The existence of this range
implies that people would be willing to pay an insurance premium of



B The BrLoos Rule 181

almost their initial wealth to get rid of a liability risk that brings about
the possibility of negative gross wealth. Obviously this is rarely the case.
People are often unwilling to pay premiums that exceed the expected
loss by even a moderate amount; these people, at least, do not have
lexicographic preferences. This impression will be reinforced by the
multiperiod analysis of chapter IV which shows that only the case e < |
is compatible with the observation that people become more risk averse
as they grow older. Thus there is clear evidence against the preference
structure depicted in Figure 12, i.e., against a relative risk aversion
greater than or equal to unity. But the evidence is only presumptive.
Since we cannot ultimately exclude the possibility that € = 1 will hold for
at least some people, the analysis should not be confined to the case
0 < e < 1, however attractive this further reduction in the sct of possible
preference structures might seem.

An open question in the discussion of Figure 12 is how to choose
among distributions with an equal survival probability less than unity.
Although the expected utility of all these distributions is —oo, people will
not generally be indifferent between them. Indeed, it is possible to find
dominance rules that allow an ordering to be made. The distributions
considered have the property v=u+z0, E(Z)=0, o(Z)=1. This
implies that a proportional change in 4 and @ which does not affect the
probability of survival®?’ must be an improvement from the viewpoint of
the decision maker. The reason is that (2) and

(22) Av=Au+zia, A>1,

ensure that each variate 7 of the standardized random variable 7 is
associated with a higher variate »” of the net wealth distribution if
initially v" >0, and is associated with the same variate if initially p” = 0,
i.e., if initially gross wealth was zero or negative (v <0). This improve-
ment, which is immediately plausible, follows from the Axioms of Non-
Saturation and Independence. According to these axioms, the decision
maker is already better off if a single small intervalz<z<Z, <7, can
be found where the variates z are associated with higher levels of wealth
while elsewhere they bring about given levels of wealth. In Figure 12 this
result is reflected by the arrows on the pscudo indifference curves. With
strict dominance, a movement along such a curve to the right leads to
distributions with a higher evaluation.

The most important aspects of the indifference-curve system in the
case £=1 have now been reported. The results can briefly be sum-
marized.

17 Cf. equations (11 B 5) and (11 B 6) for #=0.
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In the case of strong risk aversion (¢ = 1), Weber’s relativity law in
connection with the BLoos rule implies that, at 6= 0, there is a lexico-
graphic critical level of wealth. Hence maximizing the probability of
survival W(V = 0) is the predominant aim. This aim, however, only has
implications for choice if the probability distributions to be evaluated
partly extend over the negative half of the wealth axis. If this is not the
case, the usual aspects of an evaluation of expected utility remain un-
affected.

In the case of linear distribution classes bounded to the left at u — ko,
k<o, and to the right at 4+ Ko, K<, three areas have to be dis-
tinguished in the (u, o) diagram. An indifference area for u/¢ =—k, an
area with rays through the origin as pseudo indifference curves for
—k <u/o <k, and finally a normal range of substitutive indifference
curves for u/o >k. The indifference curves approach the border line
between the last two ranges at an angle if £ <2 and if, on the left side of
the distributions, density is continuously declining towards zero. The
border line is tangent to the indifference curves if £ =2 and/or the prob-
ability distribution is truncated at the lefi-hand side, i.e., if the density
jumps to zero. A pseudo indifference curve ranks above another one if
it is situated above it. On a pseudo indifference curve, an increasing
distance from the origin means that probability distributions with
higher evaluations are reached.

In the case of a linear class of unbounded distributions, for example
in the case of the class of normal distributions, the whole (4, o) diagram
is filled with pseudo indifference curves all centering on the origin.

Section C
Arrow’s Hypothesis of Increasing Relative
and Decreasing Absolute Risk Aversion

Arrow (1965, pp. 28-44; 1970, pp. 90-120) postulates a preference
structure that comes, so to speak, half way between the hypotheses of
constant absolute and constant relative risk aversion. It implies that an
increase in wealth leads to an increase in the intensity of demand for
wealth insurance and a decrease in the intensity of demand for insurance
of given risk!.

Crucial to Arrow’s argument in favor of the hypothesis of increasing
relative risk aversion is his Utility Boundedness Theorem. This theorem
requires that, over the positive wealth axis, utility be bounded both
from above and below. In deriving his theorem, Arrow (1965, pp. 18-27;

1Cf. section A 2.3.2.
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1970, pp.44-89) 1s attempting to avoid a generalized St. Petersburg
Paradox. The St. Petersburg Paradox is an age-old mathematical prob-
lem that received its name, which is graphic but not really correct, from
the solutions published by Bernourrr (1738) in St. Petersburg. MENGER
(1934) suggested as a resolution to this problem an upper bound to the
utility function, thus partly anticipating Arrow’s theorem.

Because of

(1) lim Uv)=-w, if e=1,
and
(2) lim U(v)=+o0, if e=l,

1= + oo

the Weber functions (A 34) (cf. also Figure 5) do not meet the postulates
of boundedness from below, lim _, U(v)>—-o, and above,
lim, . U(v)<+4oo. Instead, utility functions are required that, for
v — 0+, exhibit a relative risk aversion below and, for v — oo, a relative
risk aversion above unity, that is, functions that imply increasing
relative risk aversion®,

Since Arrow’s theorem fundamentally makes the preference hypo-
thesis based on Weber’s law doubtful and also because it has been
accepted rather uncritically in the literature, it needs to be discussed in
more detail. We shall first consider the classical reasoning up to Menger
and then move on to Arrow. In connection with Arrow, three problems
have to be discussed. First, the question of utility boundedness as such.
Second, the question of whether boundedness of utility, if it exists, will
have significant implications for the evaluation of risks. And third, the
empirical evidence which Arrow thinks he can cite in favor of his hypo-
thesis. Since the third point concerns the optimal structure of asset port-
folios its discussion is postponed to chapter V where such questions are
considered?’.

2The corresponding proof can be found in Arrow (1970, pp. 110f.). A simple formal
description of the hypothesis of increasing relative risk aversion can be given by using
RuBinsTEIN'S (1976) generalized utility [unction Ufu)=In(a+v) where @ <0, This
function has the property

Ulw 1 de
= @) b= and hence {v}

U'{u) a4+ 1 du
Because of lim,.qln{e + v) = Ing the function 1s bounded from below, but because of
lim, ... (& + £)= oo it is not bounded from above.

YCf. chapter VA 3.3.1.

elv) =1
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1. The St. Petersburg Paradox

Peter asks Paul how much he would be willing to pay to participate in
the following game. A coin is thrown repetitively until ‘heads’ appears.
Then Peter pays Paul an amount of 2" ducats, where n measures the
number of throws. If gambles are evaluated with respect to their
expected value, then, because of

3) Hn=§(%fy=f1=m
=1 =1

Paul should be willing to pay an infinite stake or at least as much as he
owns. That no one behaved this way seemed hard to understand, even
paradoxical, from the viewpoint of the classical theory of gambling.

CraMer (1728) and Bernourri (1738), however, believed that they had
found an explanation for Paul’s behavior in their theory ol expected
utility®. This explanation, they contended, is that

= /1\n Inv {Bernoulli),
= (1 ” Y
®) L) }nl-'] (2) ol s V,_U } (Cramer),
min(v, v*), v* >0,
provided Paul’s wealth, a, is sufficiently large®. Paul in this case would
be anxious not to stake his total wealth on the game.

Although no less a person than Larrace (1814, p. XV and pp. 439-
442) accepted the Cramer-Bernoulli approach, Mencer (1934, esp.
p. 468) stated that the utility function U{u) = min(v, v*) provides a true
solution to the problem but that the functions Inp and /v, like all other
functions unbounded from above, do not. In fact, with functions un-
bounded from above, it is easy to construct a game with

(5) 2(%YUmmn:m.

=

Rather than paying the player an amount 27, he simply must get an
amount a(n) chosen sufficiently large to ensure that, for all n,

(6) (%)n Ula(n)] >¢c¢>0, ¢=const.

4Cf. chapter 11 C 1.2.

5In the case of the function Iny, & must be larger than 4 and, in the case of /v, larger
than lz’{3—2|/§}n= 5.8, If the uniis are ducats these are negligible amounts. However,
most readers ought to participate in the game if the units are palaces.
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Whatever his wealth, Paul should be willing to stake it all for such a
game if his utility function is of the type Inwv, Jv, or generally: un-
bounded from above. Thus there is a new ‘paradox’. A genuine solu-
tion, Menger argued, can only be found when there is an upper bound
to the utility function as, for example, in Cramer’s second function. In
this case (6) cannot be satisfied.

Thus it seems that only an upper bound to the utility function ensures
that the implications of the expected-utility rule are compatible with the
true bahavior of man. However, other solutions to the St. Petersburg
Paradox have been offered, showing that this conclusion is too hasty®.

Cripman (1960, p. 221) tried to explain the low level of the stake (P)
for the St. Petersburg game by a lexicographic critical level of wealth
g >0 which requires @ — P+ a(n) > 6. FurLAN (1946) believed the solu-
tion is to discount the prizes since playing the game takes time. MENGER
(1934, pp. 471 f.) also considered the possibility of explaining the para-
dox by the fact that people tend to neglect small probabilities. SENETTI
(1976) argues that, for the St. Petersburg game, the coefficient of varia-
tion is infinite, so that, according to the usual shapes of indifference
curves in a (u, o) diagram, a participation is not attractive. Unfor-
tunately he does not show the relationship with the von Neumann-
Morgenstern function that he implicitly assumes. This, however, would
be necessary since the very unusual shape of the probability distribution
of prizes in the St. Petersburg game suggests very unusual shapes of the
indifference curves.

A simple solution was proposed by Bernoulli’s German translator
Pringsheim (Bernourrr (1738, German edition 1896, fn. 10, pp. 46-52))
but, as TopHUNTER (1865, p. 222) and Keynes (1921, p. 317) indicate, it
really dates back to Poisson, Concordet, and Cournot. According to
this solution Peter simply offered too much. If Paul is smart, he knows
that, at around about k = 50 throws, the whole wealth of the world
would not cover the prize promised by the St. Petersburg game. Since
Peter would go broke even sooner, the expected prize of the game is
definitely finite, that is, less than k + 1 ducats”®. Hence Paul would be

6 An extensive overview of the literature is given by SAMUELSON (1977).
71f 2% is the maximum prize Peter can pay, then the expected prize as calculated by Paulis

& f .
£ = X /2 |1 a2k

or, after some basic transformations, E(Y )=k + 1.

% Another reason for the finiteness of the effective prize is given by Brito (1975). On the
bhasis of Becker's theory of consumption he formally ‘proves’ that finiteness is required
because mare time than the gambler has available may be necessary in order to consume
the prize.
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wise to think twice before risking his wealth. This argument can hardly
be refuted. BertraND’s (1907, p. 61) objection, that it is possible to have
the expected gain approaching infinity by reducing to zero the unit in
which the prize is paid, is not to the point, for in this way it is not
possible to induce Paul to stake his total wealth. Of course, the expected
prize approaches infinity when it is measured in the reduced unit, but,
an aspect that is often overlooked, when it is measured in the initial unit
(ducats) it approaches zero’. This would provide an even stronger
reason for Paul being unwilling to give away his wealth'®!!,

Thus it can be concluded that there is no necd to solve the classical
version of the St. Petersburg Paradox by introducing the expected-
utility concept let alone by adding the assumption that utility is bounded
from above. The true solution is to be found in the limitation of the
prizes.

2. The Utility Boundedness Theorem

In a somewhat abbreviated form, Arrow’s (1970, pp. 63-69) reasoning
in favor of the boundedness of utility runs as follows. Let e; be a prob-
ability distribution over the strictly positive half of the wealth axis that
has a finite number of variates. Then, with a utility function that is
defined for all strictly positive values of its argument, the utility of a
single variate is finite and so is the expected utility. Moreover, lei ¢, be a
probability distribution of Menger’s type (6) that has an infinite number
of variates and that brings about an expected utility of infinity. In
addition, let there be a third distribution, e;, that is also of the type (6)
but offers prizes @(n), where @&(n)>a(n) for all » and where a(n)
denotes the prizes of distribution e,. The preference ordering over the
three distributions will then be ¢; < e; < e;, where e; < e; follows from a
dominance axiom postulated by Arrow (1970, p. 50) or from the Axiom
of Strong Independence used in this book. Finally, Arrow defines a
further distribution e, that, together with e, and e, is represented in the
following table. This distribution has the property that, starting with the

YSuppose the unit is reduced to 1/(2%) ducats. Then, in terms of the new unit (N),
Peter's wealth is 284 ¢ so that, according to the formula of footnote 7, the expected prize
in terms of new units is E(¥n) =k +x+ |, Expressed in ducats (¢), this is equivalent to an
expected prize of E(Y)=(k+x+1)/2% Hence lim, .. E(Ya) =0,

0 CE g, Keynes (1921, p. 317) and Gorrincer (1971/72, p. 494) who seem to accept
Bertrand's objection.

S amuerson (1960) shows that, measured in current units, the maximum stake of an
expected-utility maximizer approaches infinity as the unit reduces to zero. This result, too,
is not to the point,
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Jth throw, only the arbitrarily choosable amount 8, f =0, is paid out,
while before this throw the prizes equal those of distribution e;, i.e.,
a@(n).

throw 1 2 F=1 Vi J+1
= 'I 1 1 2. I J—I ] J ] _f-+1
probability (_f) (T) = (E) (E) (E)
L) (1) a(2) w@agi=1) al j) alj+1)
€3 a(l) a{2) aff—1) (/) a(i+1)
ey (1} &2 sa  Bf=1) i f

Obviously distribution e; has a finite number, j, of variates and
hence, like distribution e;, must be worse than e,: e, > e;, On the other
hand, it is to be expected that, by choosing j sufficiently large, the
evaluation of e; will approach that of e; as closcly as we wish, for, with
an increase in /, the probability that e, will bring about an outcome
different from e; approaches zero. Thus the assumption e; > e, suggests
that ultimately, with a very large j, we find e, > e;. This, however,
would be a contradiction which Arrow believes can be avoided only if
an upper bound on the utility curve is postulated since such a bound
ensures that e, and e; bring about a finite level of expected utility.

It was seen from the discussion of the classical version of the St.
Petersburg Paradox that the contradiction constructed by Arrow cannot
happen in the real world since distributions e; and e; with prizes
approaching infinity do not exist. If Arrow, nevertheless, insists on
determining the shape of the utility curve for wealth levels impossible in
the real world then he can change the unbounded Weber functions
Uv)=Inv and U(v)=(1-¢g)v' % g<l, for wealth levels above the
value of the whole wealth of the world. That should make him happy
and us too.

Despite this, Arrow’s argument cannot be labelled as completely
irrelevant for practical decision problems under uncertainty, for it can
be used to legitimate a lower bound on utility in the same way as it was
used to legitimate an upper bound. If the utility function is unbounded
from below we may, similarly to (6), construct a vanishing sequence of
variates a(n) of a wealth distribution such that

(7) (%)HU[a{n}]«:cc:U, ¢c=const., a(n)>0,

In this case, there is a distribution e; with an expected utility of —oe,
which is smaller than the expected utility of any other distribution e,




188 The Struciure of Risk Preference 111

that has a finite number of strictly positive wealth variates so that
e, » ;. If then, analogously to the previous procedure, distributions e,
with @(n) << a{n) and e, are constructed, a contradiction arises. On the
one hand e, > e,, since e; has a finite number of variates, on the other
hand e, < e;. The latter is so because, with an increase in j, e; can be
made as ‘similar® as we like to ey and e, is definitely worse than e;. The
contradiction can be removed if the utility function is bounded at
v— 04 since, in this case, e; and e; both bring about a finite level of
expected utility.

It was argued that Arrow’s postulate of an upper bound to utility is
meaningless since in the real world wealth is bounded from above. The
assumption of a lower bound cannot be discredited on similar grounds
because wealth levels down to zero can easily be realized'®. Thus the
decisive question is whether it makes sense to assume that, in the prefer-
ence ordering of the decision maker, it is indeced possible to have e,
approaching e; as closely as we wish by choosing ; sufficiently large.

This is exactly what is postulated in Arrow’s (1970, pp. 48 f.) Mono-
tone Continuity Axiom. This axiom is similar to the Archimedes Axiom
introduced above'’, but not identical. While the Monotone Continuity
Axiom refers to a comparison of two probability distributions one of
which has an infinite number of variates, the Archimedes Axiom refers
to a comparison between a non-random level of wealth and a binary dis-
tribution requiring that there be some probability w, 0 <w< 1, such that
U(@)=wlU(v)+ (1 —w)U(vy), v;<i<v;. To understand clearly the
difference between the two axioms, consider the following two possibili-
ties.

1. The axioms are postulated for wealth levels greater than or equal
to zero. In this case, using Arrow’s reasoning, we can choose some
arbitrary f# =0 and then we find that utility has to be bounded for v — 0.
The same implication holds for the Archimedes Axiom, for otherwise,
with v; =0, an indifference probability in the open unit interval would
not exist.

2. The axioms are postulated for strictly positive wealth levels.
Obviously this makes no difference to Arrow’s argument since it holds
equally well if £ is limited to being strictly positive. It does make a sub-
stantial difference, however, when the Archimedes Axiom is assumed.
If v, >0, there exists an indifference probability in the closed unit
interval even though U{(v) is not bounded for v — 0. In particular, such

12 Arrow's (1974a) rejoinder to an objection of Ryawn (1974) points in this direction.
Arrow states that the existence of the mathematical expectation of the probability distri-
bution lo be evaluated ensures the existence of expected utility if the utility function is
monotonically increasing, concave, and bounded from below.

13Cf, chapter 11 C 2.1.
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an indifference probability exists for the unbounded Weber functions
U(v)=Invand U(v)=(1 - e)v'' =2, g>1, since U(n,), U(D), and U(,)
are all well-defined and finite.

Thus it turns out to be a peculiarity of the Monotone Continuity
Axiom that it implies boundedness of utility even if the wealth variates
to which the axiom refers are limited to being strictly positive. The
Archimedes Axiom implies a boundedness of utility only when it is
assumed to hold for all wealth levels including zero. The question of
whether or not the Archimedes Axiom should include zero levels of
wealth therefore is the question of whether or not a lexicographic criti-
cal wealth level at v = 0 = 0 should be excluded. We have seen that there
are good empirical reasons for regarding lexicographic preferences as
atypical'®. Apart from this, however, there do not appear to be any
compelling reasons for totally excluding these preferences. Unless we
want to extend our axiom system by the additional axiom that St.
Petersburg gambles bring about a finite level of expected utility, there is
no need for utility to be bounded.

Occasionally Arrow’s findings have been superficially interpreted as
implying that rhe expected-utility axioms require a boundedness of
utility. This interpretation is fallacious. The axiom system used in this
book does imply the expected-utility rule, but it by no means excludes
utility functions unbounded from above or from below.

3. The Missing Behavioral Implications of the Utility Boundedness
Theorem

Regardless of the fact that our axioms do not imply a boundedness of
utility, we want to accept Arrow’s postulates for the moment and to
look into their behavioral implications for the choice between prob-
ability distributions which are less awkward than those of the generalized
St. Petersburg type. Arrow (1970, p. 98) himself sees the two following
implications: ‘(1) it is broadly permissible to assume that relative risk
aversion increases with wealth, though theory does not exclude some
fluctuations; (2) if, for simplicity, we wish to assume a constant relative
risk aversion, then the appropriate value is one.’ These implications are
obviously formulated in rather cautious language. Nevertheless, the
formulation suggests far more economic content than is really implied
by the boundedness of utility. In order to show this, let us try to modify
the Weber functions in such a way that, in the limit as v = 0 or v — oo,
they satisfy Arrow’s postulates while the evaluation of the probability

MOCF. section B 2 and the discussion of the lexicographic criteria in chapter 11 B,
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distribution under consideration is altered only to a negligible extent. I
Arrow’s Utility Boundedness Theorem has empirically relevant implica-
tions then this attempt must fail, at least for the Weber function
Uwy=(1—-¢e)uv' ¢ e+1, excluded by Arrow.

Assume first that £< 1 and define, in line with what has been sug-
gested in the previous section, the modified function

(8) Up(v) = {”(”:" R

}, D0<e<l,
(D), v=0o

i = all the world’s wealth.

Then, for all economic distributions possible in the real world the upper
bound to utility has no behavioral implications whatsoever. There is no
reason why it should be ‘broadly permissible’ to assume increasing rela-
tive risk aversion for the relevant range, nor is it clear why the approp-
riate function is logarithmic if “for simplicity’ we want to assume that
relative risk aversion is constant.

At first glance the matter seems to be different if the Weber functions
for £ = 1, which are unbounded from below, are modified so that

Uu), v>v

4 i [U(y), p=v

], ezl, v>0.

Of course this modification has no implications for probability distribu-
tions that are entirely above v. But implications are to be expected in the
case of distributions that partly extend below v. In particular, it might
be expected that gross distributions that incorporate the possibility of
negative wealth are drastically affected since

U, (0) = Um{i_-}} = U/(v) » —oo,

The expectation of drastic implications is wrong however. This will be
proved by showing that, by choosing v sufficiently small, it is possible
to define the function U, (v) in such a way that it generates the same
preference ordering over two gross distributions ¥, and V5 as the one
implied by U(w)

(1) if both distributions extend only over the strictly positive half of
the wealth axis so that for each of them we have u — ko > 0 where
k is the lower boundary of the standardized random variable
characterizing the distribution in question;

(2) if the distributions indicate different survival probabilities
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W(v > 0) (at least one of the distributions then extends partly over
the negative half of the wealth axis);

(3) if both distributions belong to the same linear class and yield the
same survival probability while their standard deviations differ.

Referring to (1): To show this, is a trivial task. We simply have to
choose v sufficiently small so that, over the range of wealth covered by
the two distributions, U(v) = U, (v). This is shown in Figure 13 for the
example of a linear distribution class. The postulate u — ko > b gives a
lower boundary line for the range where the indifference curves gener-
ated by U,,(v) have the same shape as those generated by U(v). If v is
reduced, then this boundary line can be made to approach the former
boundary y=ko to the area of lexicographic indifference curves as
closely as we wish.

4] p=katuv

Figure 13

Referring to (2): It was argued above that a combination of the BLoos
rule and the Weber functions unbounded from below implies that maxi-
mizing the probability of survival is the predominant aim'®. Suppose the
contention (2) is correct. Then, comparing two different probability dis-
tributions ¥, and V5, we must find that, when v approaches zero, at
some stage the distribution with the higher survival probability
definitely brings about the higher level of expected utility, utility being
given by the modified function U,,(v). Let us thus calculate

I5CT. section B 2.
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(10) D= | fi0)Un)do~ | fi(0)Upn(v)dv
=UW | fWdo+ | [0V
~uw { fwydo—§ HEUE

which is the difference between the expected utilities of the two distribu-
tions with fj(v) and f5(v) as the corresponding density functions. We
then can discover what the relationship

(11) Vi{z} Ve D{z}0

has in common with the relationship
(12) Vifzt Voo W04 >0) = | ) dv {2} WV, > 0) = | f(w) dv.

Assume that v is chosen sufficiently small so as to ensure that U(v) < 0.
Then, dividing (10) by U(v), rearranging terms, separating the integrals
§y...dvinto the sum f...dv+{;...dv, 0 <v <V, U(v) < U(v') <0, and
131king into consideration the fact that [’ fi(v)dv=1-7 fi(v)dv,
i=1,2, we have'®

(13) sgnD=sgn[fﬁ{u}—ﬁ,(u}du

—I LA®) - A0)] = U{ }

mmd}
Ulv)

- ! L) — £()]

With v—0, given v/, the last integral vanishes because

U(v) lim:n—u—ﬂ e |
1]
(14) m%U;): h E;IE Pu=v'>v.
L= (4] =
v lim-——2— =0, &>1

v=0 (1 —g)pl—¢

I6Cf, footnote 36 in chapter I1 D.
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The influence of the second integral can also be made arbitrarily small.
It is true that when v approaches zero its change in value is ambiguous.
However, there is an upper bound to this integral which, by a suitable
initial choice of v and v’, can be made as small as we wish without
changing the validity of (14). Because of U(v)/U(v)=1 this upper
bound is given by

(15) lim I [ (@) = ()] =2 u‘

()
lim I ()~ A0 dv |

IA

Thus, only the first integral remains. With v— 0, its value approaches
the difference in the survival probabilities of the two distributions.
Thus, overall, we have

(16) sgn [ lim lim D} = sgn [_{ fi(v)dv— [j}l{u} du}

v p=0

which gives the relationship between (11) and (12) that we sought. The
result is worth noting for it indicates that, by the use of the bounded
function U,,(v), it is possible to approximate the predominance of the
survival probability, as implied by the unbouned Weber functions, as
closely as we wish. In the case of linear distribution classes, to which this
result is not, however, limited, this leads to the clear interpretation that,
in the range u/o <k of the (u, o) diagram, a decrease in v makes the real
indifference curves approach more and more closely the pseudo indif-
ference curves described above'’.

Referring to (3): For the unmodified Weber functions it was shown
that, if there are two distributions that exhibit the same survival prob-
ability and belong to the same linear class, the distribution with the
higher standard deviation is to be preferred'®. The remaining question,
therefore, is whether this result continues to hold when U,,(v) is used.
The answer can easily be given if, within (10), the first distribution is
extended by multiplying the single variates with a factor of propor-
tionality A, A >1. This multiplication does not affect the survival
probability'® but, because of

17 This can also be proved by using equation (A 48).
IBCY, section B 2.
T, equations (11 B 5) and {I1 B &) for 0= 0.
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i

(17) D=UW | fiw)dv+§ fiw)Uv)do

L

~Uw) § Awds -] AU

where
(18) o = j AU (Av)vde = 0,
dj. L

the difference in expected utilities rises irrespective of v. If we assume
that initially D = 0 and note that a(AV) = Ag(V) then this result con-
firms contention (3). In a certain sense it seems to be the opposite of the
one derived under (2). How is it possible on the one hand for the indif-
ference curves to approximate rays through the origin in the (u, o)
diagram while, on the other hand, a movement along these rays away
from the origin leads to higher-ranking indifference curves? The answer
is simply that, while with v — 0 the slopes of the indifference curves
approach those of the corresponding rays through the origin, they never
exactly coincide when v > 0. In the (u, o) diagram, this property can
only be represented indirectly, for example, by attaching outward point-
ing arrows to the indifference curves, as we did in the case of pseudo
indifference curves., Thus we can just as well maintain the indifference-
curve system depicted in Figure 12 which was derived from the un-
bounded Weber functions.

So the verdict on Arrow’s hypothesis of increasing relative risk
aversion is: even if the assumptions that imply a boundedness of utility
are accepted, there are practically no behavioral implications for the
evaluation of probability distributions. Although all types of Weber
functions are unbounded at least in one direction, they can easily be
modified so that utility is bounded but the evaluation of risk projects
either does not change at all or, if it does, the change can be made as
small as we wish. This means that, with respect to the results of the two
preceding sections also, we should join with SaAMUELsoN (1969, p. 243)
when he says: ‘Since I do not believe that Karl Menger paradoxes of the
generalized St. Petersburg type hold any terrors for the economist, |
have no particular interest in boundedness of utility ...’
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Appendix 1 to Chapter 111

Note first that a density function f,, (w) brings about a higher mathe-
matical expectation E(W) than another function £, (w) if there is a w*

such that

(1) Ly W) > f (W), i w>wh,
and
fw{w){:.-f;v (w), if w<w*

for all w where min (fw ,f;,} > (. It is assumed that the mathematical
expectations for the lwu density functions are finite.
The problem is to calculate the sign of the derivative d'¥/de where

=1}

| z@(z)( +:—:)£dz

—pi

S ;;{z}(—+z> g |

_#.-'u'

(2) G ==

To prepare for this task, choose a number x >0 such that, given
another number 4, 0 <A < oo,

(3) ] Lz }(“‘uh) dz = 5 _f;(z}( +z) dz.

—pig =i

Such a number can always be found, provided that both integrals in (3)
are finite, since the lefi-hand integral approaches zero or infinity as x
goes to zero or infinity. Since A >0 and & > 0 the right-hand integral is
clearly finite if the left-hand integral is. Two conditions that are suffi-
cient for a finiteness of the left-hand integral can be obtained from
appendices 2 and 4 below. The first 1s

i) _,g(-%+)zn, e+A<]l.

It follows from expressions (4) and (20) in appendix 2. (Substitute
o=y, z=w, e+ A4 =0.) The second is

ii) _,Q(—£+)=D, e+A<2.

a

This condition follows from expression (13) in appendix 4. (Substitute
z=w, uea=y, £+A4=06.) Condition i) is relevant for expressions
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(11T A 53) and (111 B 18) of the text. Condition ii) will be referred to in
appendix 3.
Consider now the following definition

.y
I fz J(z+p:fa) dz

—

I Sz }<z+‘um) ﬁdz

-l

4) Wy =—

If we reduce the quotient on the right-hand side by x**4 then we get a
formula very similar to (2), the only difference being that ¢ is replaced
by ¢ + 4. Hence we can conclude that

d - -
) f{z}ﬂ#wﬂ{z}w-
E

A comparison between w4 and  is not difficult. Since, by construction,
the denominators of both expressions are equal, we only have to con-
sider the numerators. From the self-evident assumption |, , zf(z)dz <o
and the finiteness of the denominator, it follows that the numerator is
finite, too, Identifying fz{z][.]‘f‘az’r_‘;h,h Jz2)(. ) ?dz (6=0,4) with
the density functions f"’. and _,i"Wz respectively, then, from (1), we
obviously have —w > —wy, i.e.,

(6) Wy > W
if there exists a value z* such that

JE{ZJ(z+‘“) {2} itz }(““”") .

#z§2}z* and f(z)>0,z=—u/o.

Because of A >0 and by the definition of x, this is clearly the case.
Hence dy/de >0, provided conditions i) and/or ii) are met.

Appendix 2 to Chapter 111

We attempt to find out how the value of the quotient

§ wrh, (w)(y+w) ©dw

(1) A=-2
J Sy +w) dw
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is related to y. For this purpose we first consider the quotient

s

| wf, (w)x+ w) @dw

(2) B=—-—— e
| fuw)x+w) ®dw

and identify its limit with the quotient whose value is to be calculated:

(3) Im B=A.

The variables x, y, and @ are strictly positive real numbers and [, (w) is
a probability density function for the random variable W, The variable y
is defined such that w=—y is the highest lower bound on w. It is
assumed for the time being that the density function is ‘iruncated’ at
w—y, L.e., that'

(4} lim fw(w} Efw{_.y_}=ﬂ and lim f“.{WIIEfw{—}'-l-] >0.

W—r—p— W — )+

In some arbitrarily small region —y<w<—y+4, 4>0, f,(w) is to be
continuous, strictly positive, and either monotonically increasing or
decreasing. Moreover, it is assumed that

(5) :f W/ (w)dw < co.

We now write (2) as

(6) B =—[a(l—y)+ Sy]
with
—pd
| wh,w)(x+w) Cdw
(7 a=—— .

| fuw)x+w) Cdw
-¥

3: wf, (W) (x +w) @dw

(8) g=" ,
f fuw)c+ w)y@dw

-y 44

| fiu(- v +) is the right-hand side density at w=—y,
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and

) L Lo x+ w) Pdw

(9) P =— 3
_j fo(w)(x+ w) @dw

where A is chosen such that 0 < y < 1.

With e and §, conditional arithmetic means of W are defined. Since «
only covers the range —y<=w = —y + A and ftherange w= —y + 4, we
have

(10) —-yca<—y+4<p,

Note that, before the limit x— y+ is taken, x+ w>0 Fw and hence
0 < (x+ w) < oo. Consider now the limit

(11) lim B:u[lim o:(l — lim }r)+lim A lim }f].

x4 X =yt B e d B X 3+

Concerning a, it is sufficient to state that it may reach its boundaries but
cannot exceed them:

(12) -y=<lim a<-y+A.

X+
Concerning f, more precise information is available. The value of fis
determined by wvariates of w for which w=-y+4 and hence
X+ w>x—y+A4>0. This implies (x + w) € < oo even if, with x = y, the
limit has been taken., Hence

(13) lim f>-y+4.

We now consider the limit of y. Note first that, for the reason just dis-
cussed in connection with B, we have (x+ w) ©<o. Thus the
numerator is strictly positive and finite. The denominator, call it N, is
strictly positive, but it is not clear @ priori whether it is finite. Obviously,
for the value of the denominator, the boundaries

(14) N +Ni=N=N+N;, NM=N,,
or

(15) N +N1=2N=N;, + Ny, N =N;,
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will prevail where

(16) Ny =f,r4) _J.I:d (x+ w) “dw,
_.wj

(17) Np=fuy+d) | (e+w) Odw,

and |

(18) Ny = an Suw)(x + w) ®dw.

S |

When taking the limit, N; certainly stays finite, since x + w + 4 >0 even
when x = y. The matter is different with N, and N, . Because of

~y+d In(x—y+4)—In(x—y), ©=1
—e _ . -ty =
(12 et w) {(l—@}{x—y+d}"9—{r—ylj 9],0+41,

|

the limits of these two integrals satisfy

<o, @<l
20 0 < lim N > J
(20) Xy 1'2[':0:1, ®=1.
From this expression, the finiteness of the numerator, the finiteness of
N;, and the fact that the numerator is clearly smaller than the denomi-
nator it follows for the limit of y that

21) 1 > lim y

Xt P+

[::-ﬂ.ﬁ-::l,
=0, 8=1.

With the aid of the information contained in (12), (13), and (21) we
are now able to address the problem of determining the value of A. If
@ < 1, the limit of B is a negative linear combination of lim & and lim §
with weights strictly between zero and one. Since lim §>—y will hold
even when A4 — 0, we have —lim B >—y and, because lim B=A,

Xt

(22) A<y, ©<]; [.(=y+)>0.

If, on the other hand, @=1 then f gets the weight zero and the
boundaries of « also apply to —f. Thus

(23) py-A<A<y, E=1.
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Now, the above reasoning was not confined to a particular value of 4.
We can therefore choose A as small as we wish and must hence conclude
that

(24) A=y, @=z=1; f.(~y+>0.

Having achieved this result for the case of ‘truncated’ density, we
next approach the case where at w = —y the density vanishes continu-
ously. Instead of (4) it is therefore assumed that

(25) im AW =f,p-) = lim fi(w)=f,(-y+) =0,

W= — -

0 < fi(0+) < oo.

The only part, which has to be changed in the above reasoning, is the
one in which the size of the denominator N of the quotient on the right-
hand side of equation (9) is calculated. In appendix 4 it is shown (by the
reasoning up to expression (14)) that for

(26) lim N = f£,(w)(y+w)@dw
X=+j+ -y

it holds that

@7) lim N[f}mw{}{ﬂ[j]l

Thus, completely analogously to the above reasoning, instead of (22)
and (24), we have

(28) A<y, 8<l, [,(+-¥)=0,
and
(29) A=y, ©@=z=2, f.(-¥)=0.

Appendix 3 to Chapter 111

Explicitly written expression (B 5) from the text is

d
(1) W(§)5£

Ui, o) ﬁ({:—)
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where

2) a(ﬁ) z__j ﬁ,{z}zﬂ’(% + a) dz +_§m,ﬁ(z}zU’(-fji + z) dz,
-y

O O By O e P P R T

What is sought is the derivative y'(u/g). We first calculate

JRY T i AU N R e
(4) a (J)— I., flz)zU (ﬂ +z)dz ,r;( ﬂ)( J)U (0-) (=0)

. 7 e
+_§m_)§{z}zu (—+ z)dzﬂ;(—a)(— H)U (0+),
(5) B’ (*)- { fZ{Z)U"( +Z)dz f( )U’{ﬁ—} (=0)

+ j SU” ( +z)dz+£(~—)ﬂ (0+).

—hT

Here U'(0+) and U’(0—) are the right-hand and the left-hand side
derivatives of the gross-wealth utility function at a wealth level of zero.
Note that

(B __aB-Fa

or, equivalently,

p\ _ Bf & «
o w555
g By g
To calculate the size of this expression, consider first the quotient
—a'/f’. From the information on the first and second derivatives of the
function U(.) as given by expression (111 B 2) in the text, we find
o +h i h g
(8) 2 _en 8 2L
L ) ¥ g PR
with

(9) g=- I SA2)ze(l — a]( ) A +8de.

e
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(10) i = I SAz)e(l - e)( )—““ﬂdz,

=L

(11) ﬁz——f(——){l—a} £ lim e,

o4
(12) js—fz(-ﬁ){l—a} lim a*
T rr=+{4

Here use has been made of

£4 {{}+)— Ilm U'(e) =(1—¢) Iim a

=04

Consider now the quotient g/i. Its formal structure is the same as that
of expression A calculated in appendix 2. (Substitute g/i=A, z=
pro=y, f.)=f,(.), (1+&)=@ where 0<e<1, and reduce g/i by
&(1-¢).) Hence, from expressions (24) and (28) in that appendix we

T s e

Further information on g/i is available from appendix 1. Expanding
the quotient on the right-hand side of equation (4) in appendix 1 by
e(1—¢)/x**4, we find that g/i=y, when 4=1. Now, from equation
(III B 5) and equation (2) in appendix 1, we have y =du/da|,, . In con-
nection with condition ii) and statement (6) in appendix 1 this implies

&

¥ o

it f (Li) = 0.
T Uiy, a) &

With regard to expression (111 B 7), we can therefore conclude

d
(13) £ - a—g

= 0, if f—u/ag)=0,
=0, if fi—ue)=>0.

7
+[1— T

Next consider the quotient #//. Here we have the simple result

._Jr;(_,"[_{_)“ —a}ﬁa‘ﬁ
ji_:-lim 2 s =

=) —_f (__)“ _ Dt

(14)
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Taking account of du/de|y = —a/f from (1), noting that (5), (10),
and (12) imply g'=—(i + j), and utilizing (13) and (14), we can now
write (7) in the form

4

(M _ _iti ] du
(13) i (J) B Hrda

After some basic manipulation, this becomes

i+j] Oi+j do
(4 f(l—f‘l+f<n du )

16 ) Nt ) R X

{ } w(ﬂ-) ﬁ a dﬂ‘y

Now recall that in (12) the term (1 —¢&) lim,_,. a * stands for U'(0+).
Therefore, utilizing

va-ni| o u § o

L a

(17) U’(O+}=-Ef U"(z)dz = — T U"(%%—z)dz

—l'a

=]

= [ et —E](%*l— z)_“”]dz

=l

as well as (10), (12), and (13), we can transform equation (16) into

(18) w'(—‘f‘—) S g [L(—§)~ fi—ﬁf;(z)]

a ﬂ — e
=1 + &)
() u(e-51)
a o do |y

where

| >I>0, if _f;(+§) i

r=o6, i fz(-%) > 0.

Finally, we need to know which are the boundaries of f. These are
given by

(19} 0<f< oo,

It is clear that B is stictly positive. The finiteness of £ follows from
appendix 2, since f has the same algebraic form as the denominator N
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of expression (1) that was calculated with formulas (14)-(20). (Sub-
stitute z=w, o=y, U'(z+u/a)=0 for z<—pu/o, U'(z+u/a)=

(1 —=e)z + u/o) * for z >—u/a, £ = 6.) The formulas refer to the case
f(—u/a) >0. Of course, g is, a fortiori, finite if f.(—u/a)=0.

Appendix 4 to Chapter 111

The task is to check whether the integral
M A= Lo+ W +w)yCdw=] fu(mw dw
-F

is finite, where @ >0 and f,(w) is a function with the properties

(2) 0 < [/(0)f <o,
3) J(0) = 0.

For the time being it is assumed that
(4) f fw{w}dwj{: .
1]

An alternative assumption will be introduced in (15). Assume, more-
over, that there is a number A, A >0, such that

(5) [ fu(w)| <o, if O<w=A,;

and split the integral (1) in the following way:

©) A=4i+As,
A

(7 A=) fu(w)wOdw,
[

®) Ay ={ fulw)w - aw.
A

Since, because of (4) and @ > 0, it is obvious that A, < oo, we only have
to consider 4,. Define rays throught the origin bw and bw, b= b >0
such that

(9) bw=|f,(W)|=bw, if 0=sw=A.
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Then we find the following boundaries for |A4,|:

a—=0+

4 A

(10) lim [@jw!—ﬁdw} < |4, = lim {Ej w]‘ﬁ'dw].
" g—0+ o

By integration this yields

; b
(11) allm [ﬁ{‘dz_e‘ﬂz_@)}ﬂ|ﬂl|

: b }
<] T . L s, B2,
1 [2 @( o )

el

(12) lim {6(Ind-Ina)} <|4,|

< lim {6(Ind—Ina)}, @=2,

o =+

which implies

b
(13) ©>——A2-O<|d4,| < At CPc, O<2,

2-0 2—6
(14) w=<|4|=sw, ie, |4)]|=0, O=2.

Consider now, instead of (4), the alternative assumption’

(15a) “f..-{wl-th‘f:m_ 0<c<oo,
0
(15b) |fe(W)| <x<oo, w=e.

Since this assumption is weaker than (4), the condition & <2 con-
tinues to be required for finiteness. However, it only guarantees that
|15 fu (W)W @ dw| < oo, The question is which values of @ ensure that

(16) ] S (w)w @dw | < oo,

I Naote that. for the integral in equation (111 B 9), assumption (15) is ensured, but not
necessarily assumption (49,
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Because of
(17) 5_!;.,{w]w“9dw‘a:: x| w“s'dwl
= lim |x [ w@dw
= Sl=6_ iy . @],
e |x(1 - @)(w ¢ }I{{m‘ ey
== | ly(lnw*— Inc)| —o0, O=1,

the answer is @ > 1. Thus the range of values of @ that even under the
weak assumption (15) implies a finiteness of the integral (1) is

(18) | <@ <2,



