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Chapter One
The Object of Choice under Uncertainty

Section A
The Basic Decision-Theoretic Approach

1. The Ordering of Alternatives

It is the task of preference theory to indicate general criteria by which
men choose, or should choose given their preferences, from a set of
mutually exclusive action alternatives (@, @, ..., @y).

The economic approach’ to a solution of this task is to search for an
evaluation function R(.), attaching to each of the action results
(ey, €5, ..., ) @ real number with the property>

m Rie){Z}R(e;) = ei{ 2 e

such that the optimal alternative can in principle be found by selecting
the highest number:

(2) max R (e;).

u]

| It was initially developed by Parero (1906, p. 176). Cf. also the ‘reconsideration’ by
Hicks and Avven (1934},

2 In this book the symhbols >, <, ~, and « mean respectively ‘is better than’, "is
worse than®, ‘is equally good as’, and “if, and only if’, The curved brackets indicate that
those enclosed symbols which are at the same height belong together; to read them cross-
wise 15 nol permitted.

! For all decision problems studied in this book, the function R(.) is taken as given.
Since, however, in the intertemporal part 1V B, ¢; is a time path of result variables, the
possibility of changes in preferences derived for actual decisions is incorporated; mdeed
we shall find a very characteristic time dependence of derived preferences. Not all
decision-theory approaches imply a given function R(.). The Minimax-Regret Principle
(cf. fn. 26 in section B) of Nignans (1948) and Savace (1951), for example, has the
property that the size of the opportunity set affects R(.) an aspect that MiLnoR (1954) was
right in eriticizing. (My present preference is apple > pear > sandwich. If my choice is
between an apple and a pear, | take the apple. If it is between an apple, a pear, aned a cand-
wich | still take the apple.)
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The approach does not provide an answer to the question of which
action to choose if there is no unique maximum, that is, if the highest
value ol R(.) can be achieved in more than one way. In this case the
decision can be made by plucking the petals of a daisy. The function
R(.) may be called a utility function, but it must be clearly recognized
that utility in this context is only defined up to a strictly monotonic
transformation of a subjective degree of satisfaction, which means that
it is ordinal utility.

Of course, it is a necessary condition of this approach that the oppor-
tunity set contains only those alternatives which, by virtue of a prefe-
rence ordering, can be given a unique value, We ensure this condition by
the fundamental

Axiom of Ordering: The decision maker has a complete weak ordering
of all attainable action results.

It primarily indicates?

- that, comparing two arbitrary achievable results, the decision maker
is able to make the assessment ‘not worse than’ (2) and

~ that ¢,2 ¢; and ¢;2 ¢; imply e, 2 e; (transitivity).

It is easy to see that the Axiom of Ordering implies the existence of the

preference function R(e;) although nothing more than weak ordering is

required. Obviously

3) R(e))>R(e;) & (¢;2¢; andnot e;2¢;),
R(e)=R(e;) & (e;2e; and e;Z¢).

Instead of a weak ordering of preferences being assumed, a strong
ordering could have been postulated at the outset. Probably, however,
the decision maker finds it easier to make an assessment of ‘not worse

4 A more complete list of the implications of this axiom can be given as follows. Let X
be the Cartesian product attained by multiplying the set of all possible results by itself. Let
Y denote the set of all pairs of results the decision maker is able to order by virtue of the
relation #, and let ¥' be the converse of ¥. Then we have:

P el S {completeness),
in general it is not true that Ve e;:e,2¢e; = €j e {non-symmetry),
e;re; and ejzep = e;2e; (transitivity).

An implication of completeness is the reflexivity of the relation >, that is, e > e;. The sel
of ordered pairs for which the (reflexive, symmetrical, transitive) equivalence relation
holds is ¥N ¥, If ¥ denotes the complement of ¥'in ¥ then the set of all ordered pairs of
results for which the strong preference relation > is valid is ¥ Y. Since the relation > is
irreflexive it is also non-symmetric. Cf., e.g., Nacurkamre (1969, pp. 66-81) and
Fistgurs (1970, pp. 9-15),
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than’ than ‘equally good as’ or ‘better than'. Moreover, from a
behavioristic point of view, the above formulation has the advantage of
only utilizing conclusions that can bc drawn from observing what
people actually choose. By observing a decision it is possible to conclude
that the chosen alternative is not worse than the alternatives not chosen,
but it is impossible to find out whether the decision maker liked it as
much as or more than the others. Some alternative also has to be chosen
in the case of indifference’.

The Axiom of Ordering might appear innocuous and self-cvident.
However, from both the positive and the normative points of view, it 18
an idealization. Certainly no one is able to construct a completely
consistent ordering of @l the alternatives available to him in real lifed.
And even if it were possible, people might prefer to do something else
from time to time rather than continually investigate preferences and
order alternatives. From this, it is evident that a shortcoming of the
Axiom of Ordering is its neglect of the effort of ordering.

In practical life the effort of ordering implies that the preference
function R(.) has a stochastic element’, so that intransitivities are obser-
vable when the action results deviate only a little from one another. This
can be explained as follows. Assume the decision maker has some prior
information on the function R(.) without knowing its exact value for the
various alternatives. Then it is certainly possible that, when comparing
e; with e; and ¢; with ¢;, he decides in both cases that one alternative is
not worse than the other simply because the advantage he expects Lo
gain from finding the better alternative is not worth the effort of
ordering. Although ¢;~e¢; and ¢;~¢; in this case, we must not conclude
that e;~e, as we could under transitive preferences. The reason is
obvious. If the decision maker faces the task of making a decision
between e; and e;, he is concerned about the advantage to be gained
from knowing the true preference ordering between these two alier-
natives. This advantage may exceed that to be gained from knowing the
ordering between g; and ¢; as well as that to be gained from knowing the
ordering between e, and e,. Hence it may induce the decision maker to

5 Thus LiTTLE (1950, pp. 14-52) postulated that preference theory deal with acts rather
than results. But it surely should be possible to gain insight into the state of mind of a
decision maker by asking him about it.

 AUMANN (1962) therefore has tried to formulate a preference theory without the
requirement of completeness,

" The first of the economists to consider stochastic preferences was GEORGESCU-
Ropoen (1936). In psychology, however, stochastic sensation functions have been
discussed since the tamous article of THursTONE (1927).
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calculate properly the ordering between ¢, and ¢, The result of this
calculation i1s very likely to be e, » ¢,".

It is certainly desirable to develop an economic preference theory in
which the precision of ordering itself is subject to an optimization
process. But unfortunately such a theory is not available and cannot be
offered here either?.

2. Action Results under Uncertainty

In a world of certainty, the rule max, R(e;) for finding an optimal
action can easily be interpreted. Here ¢; is a particular result known with
certainty. Its evaluation by use of the function R(.) should not create
fundamental problems. In the theory of the household, the result may
be a bundle of consumption goods. In the theory of the firm, ¢ can
often be identified with the level of profit and hence the rule reduces to
the well-known aim of profit maximization.

What, however, is the result of an action under uncertainty? Think of
an entrepreneur who, despiie uncertainty about the future revenue, has
to choose one from a set of mutually exclusive investment projects.
Could the results we are speaking of be the profit observable ex post?
This would not make much sense for the decision about the investment
project has to be made before knowing how profitable it will be. The
basis for a decision, therefore, can only be a result visualized ex anre.
Such a result has an element of vagueness in it; it can only be repre-
sented as a ‘random vector’ of possible ‘ex post results’ or ‘subresults’:

¥ Cf. ScuneewEnss (1967a, pp. 35 f. and 81-84) and KreLpE (1957, p. 637; 1961, pp.
112-116; 1968, pp. 21-24). These authors discuss the problem of calculation costs and the
possibility of intransitivities being caused by sensation thresholds. The above reasoning
unites both aspects since it explains sensation thresholds through calculation costs, For a
theoretical explanation of specious intransitivities in terms of automatons see ROppiNG
and NacHTramre (1978, 1980).

? The postulate should not be confused with the aim of the aspiration-level theory, as
formulated by Simon (1957, pp. 241-260), SiEGEL (1957), SAUERMANN and SELTEN (1962),
STARBUCK (1963a and b), and others, which includes in the optimization problem the
process of information gathering undertaken in order to find the opportunity set.
Contrary to first impressions, this theory does not contradict the Axiom of Ordering. This
becomes clear if the various possibilities for information gathering are considered as
additional actions within the opportunity sct. The inclusion of informatin gathering
creates a sequential decision problem, but at each point in time there is a given
opportunity set of alternatives, one of which has to be chosen. This is completely in
accordance with the Axiom of Ordering. To interpret this choice as if the decision maker
were merely trying to achieve an aspiration level below the ‘true’ optimum is a little bit
misleading.
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FFor this reason Tininer (1941, p. 301) has called the evaluation function
R(.) ‘preference functional’. A concrete example of such a random
vector is a lottery ticket.

In order to find out what the result vector e; may be, the decision
maker has to take into account the fact that the single ex post result
depends not only on his own actions, but also on various environmental
influences that he can neither manipulate nor perfectly foresee!’. For
the purpose of elucidation, the decision problem may therefore be
represented in the form of a case study that can easily be carried out
with the aid of the following ‘decision’ or ‘result matrix’ originating
from von NEUMANN and MORGENSTERN (1947).

Table |

class of states of

he world £ b | e iy
action

a €11 - 8 e Eln
i B wen BIE e B
H‘m EI,HJ"I waa E""..lll gt E.J?.'H

Here the symbols (Z,, ..., Z,) denote mutually exclusive classes of
states of the world that the decision maker wants to distinguish'!, The
decision maker knows that if he chooses action a; and the environment
dictates class Z; the subresult e; will obtain. However, he does not know
into which class the true state of the world will fall; this is the particular
aspect of the decision problem that emerges under uncertainty.

The matter becomes more complicated if the problem of time is taken
into account. In a non-random world, time does not change the nature
of the decision problem very much. Action a; describes a time path of
the decision maker’s activity that is uniquely associated with a time path
of results. Once the optimal activity path is chosen in advance, the
individual will stick to it without making new decisions. Things are

10 Cf, vonw NEuMans and MokGENSTERN (1947, pp. 10 £.).

T Note that we have to consider classes of states of the world rather than completely
described states themselves. The decision maker will classify the states of the world accor-
ding to those criteria he is interested in, bul not, of course, according to alf criteria. This
distinction is of some importance for the discussion of Bayes's Theorem which occurs
below.
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different in a stochastic world'?. Here, even if possible, it would not be
wise 10 maintain a given time path of activity decided upon in the begin-
ning. Suppose the result matrix described above is valid for just one
period of time, In the beginning of the period an action has to be taken,
and at the end of the period nature reveals the state of the world and the
corresponding ex post result. It is very likely, then, that the result matrix
will, in general, depend on the state of the world obtaining at the end of
the previous period. This implies that an action, which vesterday was
considered for today, will only by chance coincide with the action which
seems optimal today when the result matrix is known. Thus, it is
reasonable to postpone making decisions for as long as possible. How-
ever, this does not mean that the decision maker will simply abstract
from the whole intertemporal problem. Surely, when deciding about
today’s actions, he has to take into account the fact that its results have
an influence on the opportunity set of actions available tomorrow.

These remarks on the intertemporal problem should be enough at this
stage. The problem will be taken up again in chapter IV within a some-
what more specific framework. Until then, it is assumed that a choice
has to be made a single time only and that, after some time interval
during which a revision is impossible, the result becomes known. It will
be shown that this assumption, although unrealistic in itself, may serve
as a building block for a multiperiod approach.

We are thus back to the decision problem represented by the above
decision matrix. The question now is which criteria should be used to
evaluate a row of this matrix which describes the ‘ex ante result’ e, of
action g;. The answer is given in two steps. In the present introductory
chapter we try to clarify the problem of what information about the
classes of states of the world the decision maker needs in order to come
to a decision. In chapters Il and I1I we shall try to specify the evaluation
function R(e;).

Section B
Probabilities

1. Probabilities as Degrees of Confidence

If the above result matrix is properly specified, then the element e;
really describes all those aspects in which the decision maker is interes-

12 Oceasionally authors avoid the time problem by resort to the tricky, but rather
lacking in content, construction in which the 2's are reinterpreted as time paths of states
of the world and the &'s as strategies in the sense of life philosophies that ought always to
be obeyed.
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ted of the situation that arises through a coincidence of action g; with a
state of class Z,. Thus, ex post, he does not care under which state of the
world a particular result obtained'. Ex ante however, when the decision
is actually made, the class of states of the world under which a particu-
lar subresult would occur is of great interest, since it reveals important
information on the degree of confidence with which this subresult can
be expected.

The degree of confidence, call it g, will be given a more precise
meaning later. However, at this stage we want to assume what follows.

Supplement to the Axiom of Ordering: The result of an action under
uncertainty is the random vector

E__(.e] & s &)

e ]

€1 €2 . €y

which, in addition to a description of the alternative subresults, contains

information on the degrees of confidence with which these subresults
may be expected®.

With this supplement the assumption is made that the way in which a
particular subresult is achieved does not affect the evaluation of the
vector ¢;. This implicitly excludes the situation where gamblers put up a
certain stake not only because of their confidence in winning, but also
because they have a preference for the way the game is played. The
preference for certain, mostly lengthy and complicated, procedures is
analogous to the preference of readers of crime novels for situations
where there is initially a large number of suspects who are gradually
cleared of suspicion, until eventually one of them emerges as being
obviously guilty. We neglect this aspect since it does not seem to be
significant for the sober economic decisions to be analyzed in this
book®. The reader is warned, however, to be careful about applying the

I In another context HIRSCHLEIFER (1965, esp. p. 522) argues in favar of a certain type
of complementarity between the states of the world and the subresults. This complemenia-
rity, however, arises merely from the implicit assumption that the subresults are imper-
fectly described. The reader interested in this problem is referred to Siny (1980, fn. 7).

2 Note that there is no requirement for either the subresults or the degrees of confidence
to be numerically measurable.

3 The neglect of the procedures of the game was the main point to A1rais’s (1952) eriti-
cism of the von Neumann-Morgenstern utility function for which a stronger version of the
Axiom of Ordering is required; cf. vonN NEUMANN and MORGENSTERN (1947, p. 26).
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preference theory developed here to gambling®.

Nevertheless, to exemplify a problem, reference will often be made to
fictitious gambling situations - for example in the following paragraph.
But it should not be forgotten that we are always attempting to illustrate
serious economic decision making.

To see how to interpret the degrees of confidence or credibility
(2, &2 ..., &) consider the following decision problem. From an urn
with black and white balls, one ball is drawn at random after the
decision maker has chosen a color. If the chosen color appears, § 1000 is
paid out, otherwise nothing. The decision maker does not have a prefe-
rence for a particular color. He knows that the share of black balls is w,
and the share of white balls w,. The result matrix for this problem is:

Table 2
probability Wy w3
class of states of Zy Z5
the world (black ball (white ball
actions is drawn) is drawn)
@) (black is chosen) e=1% 1000 e;z=5%0
@2 (white is chosen) e1=30 e22=§ 1000

The way in which the degree of confidence concerning the appearance
of certain states of the world is to be understood now becomes obvious.
Although both actions are alike insofar as the gain is either $ 1000 or
nothing, the decision maker will not usually be indifferent to the color,
but will choose the one that characterizes the majority of the balls in the
urn. This way, he chooses the action with the greater probability of
winning, for the shares of balls, w; and w,, indicate the probabilities
with which they will be drawn.

One of the greatest opponents of the idea that probabilities can be
interpreted as degrees of confidence was SuackLE (1952, pp. 5 f., esp.
pp. 109-111; 1955, pp. 3-16). He argued that probabilities only have
some meaning if the decision maker can repeat his actions, for then
probabilities approximate relative frequencies and hence it makes sense

4 Cf. the critique in ch. 111 B 1.3 of the approaches by TorRNOVIST (1945), FRIEDMAN
and Savace (1948), Friepvan (1952), and Markaowitz (1952). These all infer the evalua-
tion of economic risks from gambling behavior. CFI. also the remarks at the end of section
3.1.2 below.
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to select the alternative which promises more frequent success. But if, as
in the present context, a decision is made only once, then, he said,
probabilities are irrelevant since either one or the other case obtains.
Instead of probabilities the decision maker is concerned about the
degree of potential surprise he attaches to the appearance of a particular
subresult. Shackle’s reasoning, however, is not particularly convincing.
If, for example, there are 70 white and 30 black balls in the urn, which
subresult would surprise the decision maker more, ‘white’ or ‘black’?
Probably the latter, for the probability of its happening is lower.
Although Shackle himself saw things differently, the basic concept of
potential surprise does not contradict the probability concept. On the
contrary, it elucidates the observable fact that probabilities matter even
though the decision is not repeated. In the above example, people typi-
cally bet on the color for which being not drawn is the more surprising
result: this is the color with the higher probability’.

Although it seems hard to deny this conclusion for the idealized
decision situation described above, the question arises of whether this
situation has any relevance for real life decision problems. Do we find
situations in reality that correspond to the urn experiment?

Ramsey (1931), oe FinetTi (1937, 1952), and Savace (1952, 1954) see
so few parallels with reality that they suggest basing the decision on sub-
jective probabilities®. Unlike Shackle, they thus attach numbers to the
degrees of confidence gy, g5, ..., 8,- These numbers, more or less by
chance, obey the rules of probability calculus and can be interpreted
without reference to objective probabilities. With the introduction of
subjective probabilities, social science decision theory has advanced
significantly. A fundamental shortcoming, however, is embodied in its
very nature, Probabilities do not exist that are objective in the sense that
two equally well informed and equally rational individuals will neces-
sarily agree on them. For this reason the explanatory power of the
theory is rather weak. The problem seems to be particularly relevant for
SAVAGE (1954, pp. 63-67) who, unlike pe Finerti (1937, pp. 16-24) and
probably also Ramsey (1931, pp. 187f.), even for urn experiments of the

3 This is the interpretation of KreLLe (1957, pp. 648-651) and NacHTEAaMP (1969, pp.
199 £.). Cf., however, the contributions by Turvey (1949) and Graar and Baumon, (1949),
who stress the differences between degree of potential surprise and probability, with parti-
cular reference to the non-additivity of Shackle's measure in the case of mutually exclusive
events.

o For new mathematical developments of this approach see GoTrinGER (1974). A recent
contribution addressing the more fundamental problem of whether, and to what extent, a
numerical description of feelings of plausibility is possible 15 provided by ScHNEIDER
(1979, CI. also Sreamiieee (1973).
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type described above does not want to be pinned down to saying that the
rational decision maker calculates with objective probabilities’.

Thus it is not surprising that Luce and Rairra (1957, pp. 229-302),
ScHLAIFER (1959, pp. 2-23; 1969, pp. 106-127, 201-217), Pratr, RAIFFA,
and ScHLAIFER (1965, ch. 2 and 3), and Rairra (1968, pp. 104-128) make
some attempt to rehabilitate objective probabilities by interpreting the
subjective probabilities in a narrower sense than Savage does. They start
from the idea that the decision maker is able to transform subjective
degrees of confidence for the different classes of states of the world into
equivalent objective probabilities by estimating the relative frequencies
with which these classes would occur under a fictitious multiple repeti-
tion of the decision situation. This frequency interpretation of subjec-
tive probabilities is certainly inadmissible for Savage, but it is
compatible with de Finetti’s approach, and Ramsey even considered it
to be helpful®.

Transforming subjective degrees of confidence into equivalent objec-
tive probabilities has at least three advantages. First, in a very natural
way, it removes the difficulty that subjective and objective probabilities
may diverge even though the latter are known to the decision maker.
Second, all decision problems under uncertainty can be reduced to the
task of finding a preference functional R(.) for the action result

L WZ == W
{1} Ef:(e, ”>r
i B e By

where ¢; is a random vector of subresults, the ‘lottery ticket’, differing
from the one described in the Supplement to the Axiom of Ordering
only in that the degrees of confidence have been replaced by equivalent
objective probabilities (wj, wy,...,w,). Third, operating with these

! This is contrary to Kevnes (1921, p. 4): *“The Theory of Probability is logical, there-
fore, because it is concerned with the degree of belief which it is rational to entertain in
given conditions, and not merely with the actual beliefs of particular individuals, which
may or may not be rational.’

5 CF, Savace (1954, p. 4), Ramsey (1931, pp. 158 f. and 187 ), and _ « FiverTl (1937,
pp. 18 f.). On the idea of fictitiously repeated decision situations, Ramsey (p. 188)
remarks: ‘It is this connection between partial belief [in the sense of degree of confidence;
the author] and frequency which enables us to use the calculus of frequencies as a calculus
of consistent partial belief. And in a sense we may say that the two interpretations are the
objective and subjective aspects of the same inner meaning ...". The compatibility with de
Finetti's approach follows from de Finetti’s postulate that the decision maker is able to
calculate the relative frequency he expects in the future by the use of an ohjective proce-
dure from his subjective plausibility estimates.
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probabilities enables us to use the rich tool box of mathematical proba-
bility theory”.

Despite these advantages, the Luce-Raiffa-Schlaifer approach suffers
from a particular deficiency. It does not examine the way in which the
rational decision maker transforms degrees of confidence into equiva-
lent objective probabilities. In the next section but one, B 3, we shall
deal with this problem. A problem, which needs to be solved before-
hand, is to find a more precise meaning for the term ‘objective probabi-
lity’, which has, up to now, only been loosely used. This problem is
addressed in the following section B 2.

2. Objective Probability and Real Indeterminateness

Consider the following questions asked by FisHer (1906, pp.
266-269). An ideal coin is thrown.

i) How large is the objective probability for ‘heads’ before the throw?
ii) How large is the objective probability for *heads’ when the coin has
been thrown, but cannot yet be observed?

Without much hesitation the reader will answer ‘1/2’ (o the first
question. Perhaps he will also give this answer to the second question,
but some confusion becomes apparent after further consideration. At
the point in time when the probability is assessed the result of the throw
is perfectly determined. Is it not, therefore, the only reasonable answer
to say that the probability is either 0 or 1?7 What sense does it make to
interpret subjective probabilities as estimators of objective probabilities
according to the Luce-Raiffa-Schlaifer concept if chance can no longer
play a role? It secems that we must separate the decision problems of
reality into two categories, namely, one category of decisions where
conjectures about facts are involved (Is there life on Mars? Do | find oil
if I drill here?), and another where the result is really indeterminate
(Will it rain tomorrow? Which demand will occur at this price?).

" This theory 1s based on only three axioms of KoLmocororF (1933):

i) The probability is a real number in the closed unit interval.

1) The probability of a certain event is | and of an impossible event is 0.

1) The probability for the appearance of two events out of a set of mutually exclusive
events equals the sum of the probabilities of these events.
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These questions give rise to the suspicion that there is something
wrong with our understanding of an objective probability. In fact, we

have confused objective probability with what could be called *degree of
real indeterminateness’.

That the conceptions are not identical'”, becomes particularly evident
if we follow an idea developed by LapriLace (1814, pp. 11 f.). He argues
that the future history of the world is deterministic, since according to
the Principle of Sufficient Reason each event has a previous cause.
‘Today' follows from ‘yesterday’ according to fixed laws and, accor-
ding to the same laws, ‘tomorrow’ will follow from ‘today’. Free will, if
it existed'!, could be a basis for indeterminateness but neither it nor any
alternative basis does exist so that indeterminateness cannot be a feature
of the world's future. An unlimited intelligence could foresee the
process of events with certainty'?,

In such a world there is no difference in principle between the two
questions asked by Fisher. Even if the probability of its being *heads’ is
to be assessed before the throw, the final result is already determined. It
depends on how the person throwing moves his hand and on how the
movement of the air influences the fall of the coin, but all this can be

1% A clear distinction between an objective probability and the subjective degree of
indeterminateness is not always made. Cf. REicHEnpacH (1935, esp. pp. 8-13), KniGHT
(1921, esp. pp. 221 f.), and pE FINgTTI (1949, p. 91) who all treat these conceptions as
SYNONymous,

't For KnigaT (1921, p. 221) free will is the genuine cause of indeterminateness in the
operation of the world. This, however, is not obvious since, as HEisenBera (1955, p. 118)
correctly remarks, man can do what he wants but he cannot want what he wants.

12 Laplace seems Lo have developed his ideas following the apparent success of macro-
seopic physies in the fields of astronomy and mechanics. At least this is what he draws on
to prove his case. In the light of Heisenberg's Unbestimmtheitsrelationen (normally trans-
lated as uncertainty principle, but verbally: indeterminateness relations), which tell us that
conceptions like place and time, indispensable in a deterministic world, are meaningless in
the microcosmos, some doubts about the Laplacian view of the world are appropriate.
Instead REICHENRBACH'S (1925) and HARTWIG's (1956) Atialprinzip seems to be supported.
According to this, equal general causes imply equal stochastic distributions of results. The
stochastic element in the micro universe typically averages out on the macro level because
of the large number of molecules involved. However, the considerable dispersion that has
to be taken into account when calculating the explosive power of an atomic bomb (cf,
HEISENBERG (1954, p. 135)) and the influence which stochastic mutations have on the
process of evolution (cf. Monob (1971, p. 57 and pp. 141-150) who formulates an anti-
thesis to the Principle' of Sufficient Reason) are lucid examples for the effects on the
macro world. Despite all this, no one can exclude the possibility that the randomness of
micro variables is ultimately a sign of our ignorance about what is really happening. With
reference to the philosophical interpretation of Heisenberg's Unbestimmtheitsrelationen,
Einstein is said to have expressed doubts about whether God throws dice. Whatever the
truth may be, we assume a deterministic world in order to demonstrate that the pheno-
menon of probabilities does not have to be explained by true indeterminateness.
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explained from previous causes according to given laws. Thus there is
no true indeterminateness, and the only source of subjective indetermi-
nateness 1s our own ignorance.

But what is the objective probability if everything is predetermined?
According to the Luce-Raiffa-Schlaifer concept it is simply that value
towards which, in line with the probability theory of von Mises (1936),
the relative frequency of a particular event will stochastically converge
when the decision situation is constantly repeated under indistinguish-
able conditions.

Thus defined, there is an objective probability for both of Fisher's
cases, even for the second one. With constant repetitions the result
‘heads’ will occur in roughly half the throws. It could be argued, rather
sophistically, that the repetition need consist only of looking again and
again to see whether it is *heads’ or ‘tails” without actually repeating the
throws. However this would be a violation of the assumption that the
experiment has to be repeated under indistinguishable conditions, for
the first time the decision maker sees the coin, its position is unknown,
while the other times it is known. A realistic example for this case is
found in connection with the exploration for oil. The objective probabi-
lity of finding oil in a particular field is determined by the relative rate
of success in other fields that are characterized by the same geological
data. The probability is not determined by the successful proportion of
drills in the field in guestion.

The example also shows that indistinguishable conditions cannot
mean identical conditions, for there are identical conditions only if the
drill 1s always in the same field. ‘Indistinguishable’ only means ‘with
identical prior information’. The fact that this prior information is
necessarily limited is the reason a stochastic element appears on the
scene at all. From experiment to experiment, the uncontrollable influen-
ces on the result vary in a way which is deterministic, but which is not
systematically connected with the result. So they produce what we call
chance'?.

Let us think about what happens if account is taken of some of the
previously uncontrolled influences on the result. In this case, a change
in the relative frequency of a particular result has to be reckoned with.
To illustrate this, consider once morce the example of oil exploration and

IV The reader who believes that chance reguires true indeterminateness may open his
telephone book, phone each tenth person, and ask him to state his body size. Although
perfectly determimstic, the numbers he hears have to be considered statistically as random
variables, just as if the names were selected by some randomization machine whose
hehavior might be really indeterminate. The systematic sample selection methods in
sratisties make use of this equivalence.
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assume additional seismological tests are introduced as a means of
extending control over some of the influential factors. Suppose we
calculate the relative rate of success on all fields which, with regard to
the previous information and the newly introduced tests, can be consi-
dered as equal @ priori. Then, in general, a value different from that
found before the new tests will be obtained. Another example of this
effect is the problem of calculating the objective probability of loss for
an insurance contract. Although the insurance broker’s hair will stand
on end, let us assume that an insurance company insures all cars for the
same premium: since it is reluctant to make the effort of categorizing
the vehicles exactly, it practices community rating. The objective loss
probability of a particular, arbitrarily chosen, contract can in this case
be derived from the relative frequency of losses within the whole stock
of contracts, since this stock can be interpreted as a multiple repetition
of an experiment of chance with equal prior information'®. To make the
broker’s hair lie down again let us now categorize the cars according to
their horse power. In this case, the relative loss frequency in a single
category approximately measures the objective probability of loss for a
single contract belonging to this category and, compared to the case of
community rating, we shall now find that this probability takes on a
different value.

These considerations imply that there is no such thing as an objective
probability in itself. Probabilities can only meaningfully be defined with
respect to some prior information. This prior information is the only
source of subjective influence on the value of an objective probability.
Insofar as two people possess, or consider relevant, different informa-
tion, for them there are different objective probabilities. In the case of
insurance in particular, we cannot exclude the possibility that the objec-
tive probability takes on different values from the standpoint of the
company and from that of the person insured.

How information influences the probabiliy can easily be understood
with the aid of Bavyes’s Theorem (1763, p. 381, prop. 5)". It may be
helpful to interpret this theorem in the light of the insurance example.
Let M denote the set of states of the world the company thinks possible,
given its prior information. In order to calculate the probability of loss
for a particular contract distinguish the states of the world by all

14 A thorough discussion of the conditions under which the insurance case can be inter-
preted as an experiment of chance can be found in Hertew (1973, pp. 7-16).

15 For an experimental approach to the problem of to what extent people are able 10
estimate probabilities in line with Bayes’s theorem, i.e., to what extent they are capable ol
calculating correctly objective probabilities see Epwarnps and Puiniips (1964).
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possible relevant criteria'®, e.g., according to the size of the engine, the
number of the driver’s accident-free years, and the size of the car. Also
include as particularly relevant for a description of the state of the world
the cases where an accident happens and where it does not. Let /CM be
the subset of states still possible after the receipt of certain information
such as, for example, ‘the contract refers to a car of size X and to a
driver with Y loss-free years’. Let ZC M denote the subset of states of
the world that characterize the case of accident and let Z be the comple-
mentary set. Assume that the corresponding a priori probabilities!”
W(Z) and W(Z)=1— W(Z) are known as well as the conditional proba-
bilities W(I/Z) and W(I/Z). Then, from

(2) W(INZ)=W(Z)W(I/Z)=W(I) W(Z/I)

we find Baves’s formula
WUINZ) W(Z)WU/Z)
WiI) WAI)

- WA(Z) W(I/Z)
T WZYWU/Z)+ W(Z)WU/Z)

3) W(Z/T)=

This formula shows how the @ priori probability W(Z) changes to the a
posteriori probability W(Z/I) through the receipt of new information.
Figure 1 illustrates this. Moreover, it demonstrates the effects of addi-
tional information that the company might gain by considering other
criteria affecting the probability of loss, such as ‘maximum speed’ or
‘kilometers per year’. They result in the set of possible states of the
world being reduced via I, I, ..., I'™ until finally either

(4) Imcz, sothat W(Z/D=1,
or
(5) I'"NZ=@, sothat W(Z/I)=0,

I A related concept for the estimation of loss probabilities was developed by BalLEY
and Stvon (1960) and HELTEN (1974).
17 Throughout this book W{.) means ‘probability of (.)’. In the present context the
probabilitics can be interpreted in the Tollowing way:
WiZ) = share of accidents in the total set of contracts,
W(7) = share of accident-free contracts in the total set,
Wil/Z) = share of accidents for contracts of the category ‘car size X, number of accident-
(ree yvears ¥ in the total number of accidents, and
Wil/Z2) = share of accident-free contracts of the category ‘car size X, number of accident-
free years ¥ in the loial number ol accideni-free contracts.
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is found. The company is now, in effect, the same as the Laplacian
intelligence and knows for certain whether or not a particular contract
will bring about a loss.

Fienre |

Of course the attempt to increase information will soon face techno-
logical and economic barriers that prevent uncertainty from being
completely removed. MNevertheless, our thought experiment makes it
clear that the objective probability can only be determined for given
classification criteria, that is, only after the considered contract is asso-
ciated with a category of contracts that, while not identical, are never-
theless indistinguishable with respect to these criteria. The unambi-
guously correct objective probability does not exist. With additional
effort it is always possible to obtain more prior information, which
leads to a change in the objective loss probability of an arbitrarily
chosen contract. This is known as the Paradox of Homogeneous
Grouping discussed by Kwnigat (1921, pp. 217 f. and p. 224). The
perennial guestion of insurance theory'®, whether a consolidation of
non-homogeneous contracts, that is, of those with differing objective
probabilities, is possible, is reduced to absurdity by this ‘paradox’.

4 Cf. Bragess (1960, esp, pp. 40 f.). With the interpretation of objective probabililies
given above it is not surprising that Lloyd"s succeeded in finding a basis for calculating a
proper premium for insuring Marlene Dietrich’s legs. Although this company probably
did not insure many pairs of legs, there were certainly many other risks considered equiva
lent according to Lloyd’s criteria, whatever these may have been.
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3. The Assessment of Equivalent Objective Probabilities

If an insurance purchaser knows the category into which the company
puts him, he does not automatically know his loss probability. Having
the information necessary to define an objective probability, therefore,
does not imply knowledge of this probability. A probability cannot be
known before additional information about a relative frequency of the
relevant event in stochastically independent, i.e., not systematically
connected, risk situations is available'.

According to the degree of knowledge of a probability we can dis-
tinguish the following categories of decision problems:

— probabilities known with certainty o

— probability hierarchies known with certainty

- partially known probability hierarchies =

- completely unknown probabilities WRCEANLY

The concept of probability hierarchy used in this list means that alter-
native probability distributions over the classes of states of the world are
considered possible, that for these distributions further alternative
probability indications are available, and so on. (A more precise defini-
tion will be given in a more appropriate place.) The task will be to
reduce the three last cases to the first one??. In so doing we shall see that
the second case is identical with the first. Both of them are therefore
associated with the term ‘risk’. In order to demonstrate a fundamental
difference, the two latter cases will be called *uncertainty’.

It would be pleasant if objective probabilities known with certainty
were available for real decision problems. But unfortunately this is very
rarely the case. Apart from insurance and lotteries there are hardly any
practical examples, and even mentioning insurance in this context is not
without problems. Why then the never ending discussion in insurance
theory about the proper model for loss distribution if this distribution is
known with certainty?!-22?

To gather information on relative frequencies, empirical experience is

1% The conception of ‘independence’ is used here withoul judging the philosophical
issue of whether independence in the literal sense exists,

A Recall that we assume rational behavior. The deficiencies of man in handling
probabilities are taken into account here only as a contrast to rational behavior. For a
sludy in various kinds of deficiencies see Paivies (1970) and KAuneman and TVERSKY
(1973a and b),

U See Herren (1973).

00, however, ScHNEEwEss's (1967, p. 271 ) attempt to defend the case of risk
against the contention that it s not very relevant in practice.
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not always necessary. KretLE (1957, p. 638) correctly comments that for
many practical problems relative frequencies can be assessed with the
aid of thought experiments?. This is also the basic concept of the Luce-
Raiffa-Schlaifer approach®, an approach the present book follows in its
attempt to reduce all decision problems to the case of risk. Unfortuna-
tely we very rarely achieve probabilities by thought experiments for
which we would be prepared stand bail.

Thus an analysis of the last three of the above cases is indispensible.
We start with the extreme case of completely unknown probabilities and
then proceed with the problem of probability hierarchies.

3.1. Completely Unknown Probabilities

In the early stages of the development of the theory of uncertainty a
number of preference functionals were tailored for this case that went so
far as to dispense even with surrogate probabilities, for example, the
Maximin (or Minimax) Principle of WaLp (1945; 1950, p. 18) and of
voN Neumasn and MorGensTERN (1947, p. 101), the Optimism-
Pessimism-Index of Hurwicz (cited according to MiLnor (1954, p. 50)
who refers to an unpublished manuscript) or the Minimax-Regrei-
Principle of Nienans (1948) and Savace (1951)*°, We shall see that the
deliberate abstinence from the use of probabilities in these constructions
was not really necessary. It is possible to find equivalent surrogaie
probabilities.

3.1.1. The Ellsberg Paradox

Consider a lottery of the kind constructed by EvLsBerG (1961) in order
to demonstrate the exact opposite of the above contention.

Out of an urn with white and black balls one ball is drawn randomly.
[f the decision maker wants to participate in the game he has to pay the
price p and to select one of the two colors. If his choice turns out to be

3 GeorGESCU-ROEGEN (1954) seemed to have in mind a similar aspect when he
distinguished risk and uncertainty according to whether or not the details of the procedure
of a game are knowr.

2 Cf. section B 1.

2% With reference to the result matrix, the preference functional of the Maximin
Principle is the minimum of a row, and the preference functional as given by the
Optimism-Pessimism Index is a weighted average of a row’s minimum and maximum.
According to the Minimax-Regret Principle, first each element of the result matrix is
replaced by its difference with the maximum of the corresponding column and is multi-
plied by — 1; then the maximum of a row in the so-transformed matrix is taken for the
preference functional. A detailed comparison of the criteria is given by Miron (1954) and
Luce and Ratera (1957, pp. 275-297).
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correct he obtains $ 100, otherwise nothing. Table 3 shows the corres-
ponding decision matrix.

Table 3
class of states of black is white is
the world drawn drawn
actions
black is chosen 00 —p -
white is chosen -p 100 —p
no participation Lt} 0

Nothing has been said so far about the proportion of white and black

balls in the urn. We allow for two alternatives.

(1) The decision maker knows that the urn contains w;+100= 50 white
balls and w,- 100 =50 biack balls.

(2) The decision maker does not know the relative shares of the two
colors.

The question is, for which of these games he is willing to pay the higher

stake.

The typical decision maker answers that his maximum willingness to
pay for the first game exceeds that for the second game. This answer
demonstrates a choice which is incompatible with the hypothesis that
for the second game, the ‘uncertainty game', he assigns subjective
probabilities to the appearance of the two colors. For, if he does so, he
can only have believed one of two things, either that the probabilities
are equal (w; =w,), or that they are unequal (w,# w;). In the first case
his maximum willingness to pay should be the same for both games. In
the second case his maximum willingness to pay for the ‘uncertainty
game’ (2) should be higher than for the ‘risk game’ (1) since by choosing
the right color he has a more than 50% chance of winning.

In the literature there is no unanimous evaluation of this choice
known as the Ellsberg Paradox. KreLLE (1968, pp. 178-184) accepts it as
an indication of a particular uncertainty aversion and tries to model this
by introducing an Information Axiom (p. 181). RoBerTs (1963)% thinks
the decision maker misinterprets the decision problem offered to him,
and BRewrr (1963) and ScuneewEss (1968b) conjecture that the seeming
inconsistency between the observed behavior and the use of subjective
probabilities arises from the fact that the decision maker is trying to
score against the experimenter. It is possible that these interpretations
are correct, but perhaps the people interviewed by Ellsberg who where

B See also the rejoinder by Evisserc (1963).



20 The Object of Choice under Uncertainty |

asked to give a quick and intuitive answer were simply being pressed too
hard. This interpretation follows from a slight modification of the
uncertainty game proposed by Rairra (1961).

The decision maker is asked whether, when playing the second game,
he prefers a particular color. If, as one would expect?’, his answer is
‘no’, a third game is suggested:

(3) A coin is thrown to decide which color to bet on. Then the uncertainty
game (2) is played.

When asked to state his maximum willingness to pay for this com-
bined game, the typical decision maker nominates the same amount as
for game (2). This seems very reasonable. If he does not have a special
preference for one of the two colors then he should be indifferent
between choosing the color himself and having it chosen by throwing a
colin,

Nevertheless the decision maker has been trapped. It can easily be
shown that the third game is virtually indentical with the first game
where there is an objective probability of 50% each for the chance of
winning and the chance of losing. Consider the following result matrix
the head of which shows a tree diagram indicating which classes of
states of the world arise from combining the throw of the coin with the
draw from the urn.

Table 4

coin throwing e W

[y
decides for W

12 1/2
draw from
¥ \& N 2.
urn _é‘v %‘ %*# -:g:z;

action .,:.JT W] ¥ :"f W E
game(3) 100 —p —p - p 100 —p
status quo 0 0 0 0

Let wand w) denote the unknown probabilities or relative shares of
black and white balls. Then, with

fwikwl=dwit w) =1,
we can easily calculate an objective probability of winning and, of
course, an equal probability of losing without, and this is surprising,

having to know the probabilities w;*and wy.

27 If the decision maker prelers a particular color, we can always repaint the balls,
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Comparing the maximum willingness to pay for all three games, we
can infer that the decision maker must have made a mistake®®. With
regard to the winning chances, games (1) and (3) are identical. Thus the
mistake must either be that games (1) and (2) were considered to be
different or that games (2) and (3) were considered to be the same. A
clear choice can be made between these alternatives, as long as we accept
a well-known axiom for rational behavior under risk.

3.1.2. The Axiom of Independence

In this section Raiffa’s trick will be studied in more detail. The
analysis will demonstrate that it is irrational to distinguish between risk
and uncertainty and will prepare the ground for a rule to be derived in
the next section. According to this rule it is possible to achieve
equivalent objective probabilities even when starting from a complete
ignorance of any probabilities?’.

Consider Table 5. It resembles Table 4, the only difference being that
there is the additional game (2) which allows for betting ‘white’ or
‘black’. The reader might be confused at first glance by the fact that for
game (2), other than in Table 3, there are result vectors with four
elements. However, he may easily convince himself that the throw of a

Tabie 5
coin throwing M
decides for
1,2 12
draw from ke if;s s 4,
urn & = o e
Iy G 3 o
action wi wi w w?
black
A 100 —p —p 100 —p —p
hosen
me(2 e
) —
is
- 100 - - 100 —
chosen P P P P
status quo 0 0 0 )

% After this explanation the persons asked by Raiffa admitted that they were wrong
and revised their evaluations.

M To the best of my knowledge Raiffa did not attempt to give a preference-theoretic
foundation For his trick. Neither did he extend his 1961 comment on Ellsberg in his later
text book (Ramea (1968)).
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coin is irrelevant and that, whatever color is chosen, there is a chance of
winning with the unknown probability w;"and a chance of losing with
the, also unknown, probability w.%

The essense of the Raiffa trick can now be seen. It is to suggest the
equality between game (2) and game (3) by interchanging the last two
elements in row 1 or the first two elements in row 2. By doing this Raiffa
has implicitly made use of the famous Axiom of Independence that has
been frequently discussed in risk theory™.

The axiom was proposed by Magrscuak (1950, pp. 120-122, postulate
1V), but became popular in a stronger version presented by SAMUELSON
(1952a, p. 147). In this book we only consider the strong version’!;
although not really necessary at this stage, this strong version will be
needed later.

Axiom of Strong Independence: Let w denote a (known) objective
probability and e\, e., ey three arbitrary result vectors. (In special cases
they may be scalars.) Suppose there is the preference

e 2 je,

then, for result vectors combined with some arbitrary result e;,

w 1l—w {p.} w l—w
€ €3 g & f
ifo<w=l.

Referring to concepts from the world of lotteries, we may also express
the axiom as follows. If there is a choice between two lotteries, both of
which provide the same prize with probability (1 - w), but different
prizes with probability w, then the ordering of the two lotteries should
be the same as that of the two different prizes.

The axiom corresponds to Marschak’s weaker version if the indiffe-
rence symbol ~ only is considered and thus suggests the statement that
the value of a lottery is not affected if one of its prizes is replaced by an-
other prize which, though different in kind, is considered to be the same

30 In connection with the von Neumann-Morgenstern Index that will be considered
below in ch. I1 C 2.

3 See Samuerson (1952a). In SamuiELson (1952b) a slight modification is introduced.

In the version
w l—w w l-w
Ry
£y (cf| 22 4]

the axiom corresponds to the Sure Thing Axiom of Savace (1954, p. 73).
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from an independent point of view, For this reason, Marschak’s postu-
late is sometimes called the Substitution Axiom?*.

The substitution property was used when interchanging the elements
within row one and row two in Table 5. Consider the following relations
where g, and g, denote the degrees of confidence in getting, respectively,
a black ball and a white ball:

(LQ Ix’2)=€ E( £ g )_ result of game (2)
P 8 “\3100-p -p when ‘black’ is chosen

(UZ 1;"2) Lot ( 2 25 ) » { result of game (2)
)=

e & —p $100—-p/ | when ‘white’ is chosen
(”2 “2) = result of game (3)
€ €2

With regard to the Axiom of Independence, this implies

(uz 1!2) (1;’2 1;"2) (m. 1;‘2)

(6) ~ - ® e —e.

(=] e (2] (25} (=] (o)

Thus games (2) and (3) have to be considered as equal if ¢, is not worse
than e,, and e, is not worse than e, i.e., if the decision maker does not
know on which color to bet. In connection with the identity of games (1)
and (3) demonstrated above, it follows that it would be a mistake to
perceive the uncertainty game (2) as something different from the risk
game (1) if the Axiom of Independence is accepted.

To let a coin decide if one does not know which color to choose seems
plausible; thus far there is no objection to the Axiom of Independence.
There are, however, other implications that at first glance do not seem
to be very reasonable. Some of these were taken up by Arrais (1952 and
1953).

Suppose you have a maiden aunt, making her last will. She asks you
whether you prefer her Rococo sideboard (RSB) or her Colonial side-
board (CSB). Suppose your answer 1s

RSB » CSB.
Unfortunately the aunt intends to leave you her antique clay pitcher

(ACP), too, so that you can put it on the sideboard you get. Is your
preference in this case automatically

Yo For example by Avias (1953, p. 528).
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(RSB, ACP) > (CSB, ACP)?

Obviously not*.
But this is not what the axiom says. Unlike the example above, it

refers to mutually exclusive events. A correct example would be where
the aunt offers you a choice between two lottery tickets, the first giving
the chance of winning a Colonial sideboard or an antique clay pitcher,
and the second the chance of winning a Rococo sideboard or a clay
pitcher. In this case you need not take into account the discomfort you
would suffer from sceing the clay pitcher on the Rococo sideboard.

Another criticism™ cannot so easily be dispensed with. Let us ask
whether we could accept the choice

@) ( 98 % 207 2 100%,
$500 mill. $0 $ 100 mill,

and also the other choice

(b)

0,98% 0,02% 99%, N 1% 990,
$ 500 mill. $0 1 $100mill. §1 /)°

Not everyone will decide this way, but many reasonable people do,
Define

2 e . AN, 2%\ _ ( 100% and o. = (100%
= \$500mill. $0 /27 \$100mill. )’ i 0 )

Then decision (a) is
e < &

and decision (b) is
(1% 99%) . (1% 99%)
€ €3 € e d

A comparison reveals a violation of the Axiom of Independence.

M Cf. Avvais (1952, p. 316, footnote). A similar point is made by WoLp (1952); cf. also
the directly following discussions with Shackle and Savage and the contribution by
SamuieLson (1952b, pp. 673 [.).

M ALLAIs (1952, pp. 316 £.; 1953, pp. 529 £.).

¥ The majority, but not all, of a group of about 20 students asked by the author. Thus
SAMUELSON (1952b, p. 678) does not have to be afraid that he and Savage are the only
people in the world able to give consistent answers to Allais’s questions.
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This example is related to the Ellsberg Paradox. Again it is possible to
reveal the inconsistency in the two decisions by presenting them in a
slightly different way*®. Consider first the following problem

1% 99%
(c) ( 98T 207, y 100%
$ 500 mill. % 0) (5 100 mill.)

This formulation means that the decision maker has to participate in a
game where, with probability 99%, he can win $ 1 and, with probability
1%, he is given the choice problem (a). It is assumed that his decision
would be the same as before. Unless he becomes more optimistic because
the 1% chance is realized (‘It's my lucky day!’) this seems to be a
reasonable assumption®’. Now let us modify (c) by asking the decision
maker to announce his decision before the outcome of the initial obliga-
tory game is revealed. Except for Arrais (1952, pp. 313-330; 1953, p.
538) hardly anyone will come to a different decision. The preference
revealed will therefore be

1% 99%, 1% 9%y
(@) 98% 2% < _ |
($ 500 mill. $§ u) $1 § 100 mill. $

Calculating the probabilities for achieving the alternative possible prizes
according to the multiplication rule for independent events, we find that
(d) is identical with (b), The fact that the previous decision deviates
from the current one reveals the inconsistency. Thus, instead of demon-
strating the implausibility of the Axiom of Independence, the example
shows that it would have been wise to clarify one’s own preference
structure with the aid of this axiom before making a decision. As ALLals
(1953, p. 540) does, we could object to this conclusion on the grounds
that problems (b) and (d) are not equivalent since the procedures of the
games are different. This, however, is the above-mentioned criticism of
the Axiom of Ordering that cannot be accepted for serious economic
decision making®®. The inconsistency revealed in the example can hardly
be accounted for by appealing to the pleasure of gambling. Among the
people asked by the author whether there is a meaningful difference

6 The presentation is of the kind chosen by Markowitz (1970, pp. 220-224) for similar
examples, Cf. also Savace (1954, p. 103).

1 Since there are given objective probabilities it is certainly irrational 1o believe that the
probabilities of the second round depend on the result of the first.

ool the above remarks to the Axiom of Ordering in section B 1,
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between (b) and (d) there was no one who thought that there was'. The
true explanation of the inconsistency is that presentation (b) hides to
some extent the significance of small probabilities while this significance
is obvious in (d).

The conclusion to be drawn from Allais’s criticism, therefore, is the
same as that from the Ellsberg Paradox. Man’s capacity to calculate is
occasionally strained in decision making under uncertainty. He makes
mistakes, he does not behave as his ideal relative modelled in this book
does. But he does try to emulate his relative. This is his raison d’étre.

3.1.3. A Rehabilitation of the Principle of Insufficient Reason

Equipped with the Axiom of Independence, we are now in a position
to generalize the coin-throwing trick. The result of this generalization is
the famous Principle of Insufficient Reason that dates back to J.
Bernourir (1713, pp. 88 f.) and LarLace (1814, pp. IV and VII)*,
Applied to our problem, according to this principle the same objective
probability has to be attributed to all alternative classes of states of the
world as long as the decision maker has no reason to believe that one
class is more likely than another?'.

A good example of the value of the Principle of Insufficient Reason is
provided by the above model of an urn with krown content. The likeli-
hood of any one ball being drawn out of an urn seems to be equal to that
of any other when all the balls are the same from a manufacturing point
of view. Thus we conclude that the relative share of balls of one color
indicates the probability of the appearance of this color. That this
conclusion is correct can be tested experimentally by repeated drawings.

Is there a different decision problem when it is known which colors
are in the urn, but when the shares of these colors are unknown? The
difference does not seem to be fundamental for one can well imagine
that drawing samples from an infinite number of urns, each of which is
known to contain only black balls and white balls, will, in the long run,
provide 50% black and 50% white balls. However, many people will
feel there is a difference. We therefore want to see if there is another
way to show that, in the case of complete ignorance of any probability
information, it is wise to behave as if there were equal objective proba-
bilities, known with certainty, for all classes of states of the world in the
decision problem.

The analysis refers to the following decision problem. There are the
classes of states Z,,Z,,...,Z, the objective probabilities of which,

3 Cf. fn. 35.
40 Keywnes (1921, pp. 41 1) utilized the name Principle of Indifference.
41 The following discussion draws heavily on Sixm (1980).
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wihwa ... wh Y7, w=1, are all completely unknown. There is no
reason for the decision maker to think that the appearance of one of
these classes is more likely than the appcarance of any other. The oppor-
tunity set consists of the actions ay,a;, ...,4a, with the result vectors
€y B2y 0y [

W s WY +
(7) e,-:( B2 : Vi=1,2,...,m.
€;) €i2 <o €y

We thus have a decision problem as illustrated by the matrix of Table 1.
The aim is to show that

QIR oy 1
8) (w; W3 w)&(r’n 1/n lf’n) s L

=] Eia e &; &y £} sis E

We first introduce a ‘random generator’ with states Z{,Z;, ..., Z),
occuring with objective probabilities wi, w3, ..., w/,, and distinguish the
classes of states of an artificial world according to the states of this
generator and the classes of states of the real world, such that there are
n’ different classes. The above decision problem can also be
demonstrated in this artificial world. This is done with reference to
action a; and result vector ¢, in the first row of Table 6. Independently of
the states of the generator, subresult e; occurs if the class Z; of the states
of the real world obtains.

Table 6

i'i!.l'ldunl /{'/-‘\HH %

W' W' W
peneralor ,_,—r--’”'—f : LT | i ==
, Z, Z, v
A A\ AN /N
real Wi W whwiw? wiuwiws wy Lo R
world T - R S N 2 i SR
Zy-dy| Zi Zynidy | Ey  Byidegied o | Zrdaa Ly
it *li S Y iy izl i L B B i EIEJ."""!H | Ein
lj] T 1 B R R O | (R € Ciaeetin e Ehi

'” L L Vo Ejeea g € g ST 4 B o | Al Eipsellin—1 i
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Before the other rows are considered, n— 1 new result vectors

2 (W H-": :
(9) P = )
E“H Ef'l CE el'ﬂ s l

are defined. These result vectors can be produced from the original

vector
* * *
W Way .. W
EFEE'I'I s ( l 2 n)
€1 € ... €y

by moving the subresults step by step to the right and adding to the left
side the respective subresult that drops off at the right side with each
single step. It 1s important to note that a pair-wise comparison of any
arbitrarilychosen result vectorse’ and e will lead to the judgement that
e/ is not worse than e and vice versa. Hence

(10) ef ~e! Vik=1,2,...,n.

This equivalence indicates that the decision maker does not care under
which class of states of the world a particular subresult occurs. In
principle, there are two potential reasons for an interest in the class of
states of the world. First, there may be a particular state preference in
the sense that, given that a certain subresult occurs, ex posf the decision
maker prefers this subresult to occur under class j rather than under
class f+ 1. Second, the decision maker ex ante would like a certain sub-
result to be attached to a particular class because he feels that this class
is more plausible or less plausible than others. Both reasons are irrele-
vant however. The first is excluded by the previous assumption (see the
introduction to section B) that the subresults are defined in a way that
exhausts all relevant aspects of the situation ex post. The second is ruled
out by the assumption that the decision maker is completely ignorant of
any probabilities of the different classes ex ante.

We now proceed by gradually building up the other rows of Table 6,
maintaining an equivalence with the first row.
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Write the result vector as represented by the first row in the form

W 1 — w3
¥ (4 (4
i Wi W3 Wy
(11) e o S e =
l—Wz ].—H"z I—H-"z
1 1
e/ AR T

The advantage of this procedure is that we can make use of the Axiom
of Independence and can replace the first element (under w3) by e;? from
(9). A retransformation of (11) then yields the second row of the matrix
of Table 6. This second row in turn can be written as

Wy 1-wy
(12) o AR I S
l1—-wi 1—-wj 1—w3 1—w;
e e} g v B e &

so that the first element can be replaced by e; from (9). Another retrans-
formation brings about row 3 of the matrix. We proceed in this way and
substitute step by step e/, &7, ..., e from (9). The result is row n of Table
6. The use of the Independence Axiom in each step of the transforma-
tion procedure ensures that this row and the first row have the same
value.

The subresults appearing in row n are the same as those in row 1. For
the probabilities of the occurence of these subresults in row n we can

casily calculate:

(13) Wiey) = wiwi+ wiwi+ ... + Wo_  Wh_ 1+ Wawp,
Wiea) = wiwi+ wiwi+ ... +waw,_ +wiw,

Wiein) = W:WI 2 Wf“’i"’ eee T W:—lw::—l +Wa_ Wh
Note that, so far, assumptions about the sizes of the probabilities
Wi, w3, ..., w; with which the random generator takes on states Zj, Z3,
..., Z;, have not been used. Thus we are free to set

Wi=wy=-=w,=1/n

for example. This has the advantage that these probabilities can be
factored out in (13). The result is:
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(14) Wiej)=1/n(w+wi+ ...+whH=1/n,
Wieyp) = 1/n(wi+wi+ ... +whH = 1/n,

Wie,) = 1/n(wi+wi+ ... +whH = 1/n.

Since completely analogous reasoning can be used for all other result
VeCtors €,€5,...,€;_ 1,8, ,...,€, of the original decision problem as
given by (7), the equivalence asserted in (8) has been proved.

Thus, the following result which rehabilitates the Principle of Insuffi-
cient Reason is achieved. Under complete ignorance of probabilities for
the classes of states of the world, the decision maker has to evaluate the
rows of his decision matrix
(1) as if each class obtained with the same probability and
(2) as if this probability were an objective value known with certainty.

Attempts to rationalize a similar result were provided by CHERNOFF2
(1954) and MiLnor (1954) but their axioms are quite technical and intui-
tively not very appealing, at least according to their critics Luce and
RAIFFA (1957, pp. 286-298, esp. pp. 291 and 296). These attempts have
little in common with the one made here, either with regard to the
axioms or to the idea of the proof. Moreover, it should be stressed that
Chernoff and Milnor assume that the subresults are already transfor-
med into von Neumann-Morgenstern utilities*®, Later we, too, shall use
this utility concept. However, this procedure requires the introduction
of a further axiom which is not accepted in lexicographic preference
theory and thus should not be used unless necessary *.

3.1.4. Equivalent Probabilities in Tree Diagrams

In many practical situations the decision problem has a structure
resembling that illustrated in Figure 2, that is, the classes of states of the
world (Z) are obtained if cases, subcases, subcases of subcases, etc. are
distinguished.

An interesting question is which probabilities should be assigned to
the classes if the decision maker has no idea at all how plausible the
branches of a fork are. According to our previous result, it seems

4 Chernoff's approach is not taken up in the book by ChErnoFF and MoOSES (1954),

4 See in particular CHERNOFF (1954, pp. 422 f.) and MiLNoR (1954, p. 49). The *utili-
ties’ in these papers are not only numbers which standardize heterogeneouns results s in
KRELLE (1968, p. 122; cf. also pp, 144 I.) so that a von Neumann-Morgenstern function
can be applied to them, but are also values of this function itself. For example. this is
indicated by the fact that Milnor (p. 57) assumes that adding a constant to each element of
a column of the result matrix does not change the preference ordering of the rows and also
by the fact that Chernoff makes use of the expected-utility concept in definitions 7 and &
and in postulate 8.

4 The axiom referred Lo is the Archimedes or Continuity Axiom. CFoch. 11¢ 2.1,
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Figure 2

adequate to distribute the probability sum of unity equally among all
branches of a fork. Then, according to the multiplication theorem of
probabilities, the probability of a certain class of states of the world
could easily be calculated by multiplying the probabilities of all the
branches from the trunk through to the last small branch defining the
class in question. For the example of Figure 2, this method would yield
the following probabilities:

no. of class of states of the world 2 ...9 1011 12 13 14 15 16 17
1

T Ly L o [ e IR P

probability

If correct, the important feature of this result is that the Principle of
Insufficient Reason yields not only equal probabilities for the classes of
states of the world, but also non-uniform probability distributions. The
question is, however, whether the result does indeed follow from our
axioms.

For simplicity, we refer only to the special case illustrated in Figure 2
and assume that a particular action g; is chosen, leading to a particular
random result vector e; which is a row in the matrix. We shall consider
several subdivisions of this vector that are represented figuratively by
the complete set of branches below the forks A, B, sl The sub-
divisions are indicated by the letter labelling the corresponding fork.

The demonstration starts with fork 4 and the corresponding random
veetor A, consisting of elements e, €, and ¢;5. According to the result
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of the previous section, equal probabilities can be assigned to all
branches below fork 4 without changing the evaluation of vector A, We
proceed analogously with forks B, C, D, E, and F and call the result
vectors that in this way are assigned objective probabilities 4, P
Without integrating these vectors into the tree diagram at this stage, we
now look at fork G and regard it as a random vector consisting of the
elements A, B, and C. We then have a problem structured like that in
the previous section, for there we did not place any restrictions on what
a subresult e; is. Thus equal probabilities can be assigned to all branches
below G (each 1/3). Analogous results can be obtained for the branches
below the forks A and 7. Now replace elements A, B, and C by A", B',
and C’ within vector G in a step-wise procedure, referring to the Axiom
of Independence:

1/3 1/3 1/3 1/3 273 1/3 273
ot (uz 1!2) = (lfz Uz)
a4 .8 e ALNE LG AR
143 243 1/3  2/3 103 248
(15) ~ (uz uz) - (uz uz) - 1/2 Ifz)
B \A" C B\ ¢ Q\A B
173 243 1/3 1/3 1/3

~ (uz wz) = =G
Ci‘ Ar H! A.i B.‘ Ci‘

The transformed vector is called G, Analogously H is transformed to
H’ and I to I'. The final step is to assign equal probabilities to the
branches below J and then to replace G, H, and f by G', H', and I'.
Thus, for the example of Figure 2, the Principle of Insufficient Reason
has been meaningfully utilized for the assignment of probabilities in tree
diagrams. We forego the pure mechanical work of a generalization for
arbitrary tree diagrams and state the following.

In case studies for determining the classes of states of the world,
whenever no subcase is more plausible than any other, each subcase
must be assigned an equivalent objective probability equal to the
reciprocal value of the number of subcases. The probability of a certain
class is then the product of the probabilities of all cases and subcases
that have to be distinguished to define this class.
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3.1.5. Criticism of the Principle of Insufficient Reason

Our results are far from being generally accepted. For example,
KreLLE (1961, pp. 99 and 106; 1968, pp. 180 f. and 189 f.) refuses to
accept the particular aspect reported under point (2) at the end of the
last section but one. He does not deny that, in the case of complete
ignorance, it is wise to utilize equal subjective probabilities. But he
argues that these probabilities should not be treated as if they were
objective and known with certainty. Instead, he maintains, the decision
maker’s preferences may well exhibit a particular kind of ‘uncertainty
aversion’ that cannot be discredited as irrational. On the other hand,
with this ‘Reduction’, and ‘Substitution Axioms' Krelle assumes the
(weak) Axiom of Independence as we do. Thus, from his point of view,
the basic judgement (10) has to be denied. This, however, will hardly be
possible without refusing to accept the Axiom of Ordering (also used by
KReLLE (1968, pp. 123-125)) and thus rejecting our approach as a
whole,

A criticism has also often been made of the classical Principle of
Insufficient Reason and this needs to be scrutinized to see if it affects
our result. A coin is thrown twice. What is the probability that tails
comes up both times? 1f we distinguish the classes of states of the world
‘tails, tails’ and ‘not: (tails, tails)’, then the probability sought is 1/2. If,
however, we distinguish the classes ‘tails, tails’, “tails, heads’, ‘heads,
tails’, and ‘heads, heads’ then the probability is 1/4, a contradiction.
Here, the correct solution is obvious, but ascertaining the probability of
getting tails at least once can be more confusing. Accordingly,
d’Alembert* | the enfant terrible of classical mathematics, argues that if
‘heads’ comes up with the first throw, a second throw is superfluous.
For this reason, the classes of states ‘heads, heads’, ‘tails, heads’, and
‘tails, tails’ should be distinguished, and the probability sought is 2/3
instead of 3/4, the correct probability.

These examples lead us to the problem of which are the classes of
states of the world that have to be distinguished in practical decision
making, a problem that has already been clearly discussed by von KRriEs
(1886, esp. pp. 1-23). Obviously a calculation of objective probabilities
according to the Principle of Insufficient Reason demands correctly
distinguished classes of states of the world. In the light of classical
probability theory, this is a very important problem that unfortunately
has never been satisfactorily solved. However, our results are only
slightly affected, for we sought subjective probabilities rather than
objective ones, although, of course, the former have the form of

1 According 1o Topiuniir (1865, pp. 258 1., art, 464) cited from d'Alembert, Croix
o Pile, Encyclopedie ou Dictionnaire Raisonne ... 1754,
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equivalent objective probabilities. In order to make the point quite
clear: if d’ Alembert does not see any reason why one of his three cases is
more plausible than the others, he should indeed assign probabilities of
1/3 to each.

This, however, does not mean that there is no reason. Had
d’Alembert considered the following tree diagram (Figure 3), he would
have found that no one branch is more plausible than the others and
thus would have calculated the correct probabilities 1/2, 1/4, and 1/4.

f,_..--""rﬁh""--
_"‘_._‘,”"r‘.’ -“‘-\_\_\H
tails heads
;ff\\-
__'_'_._,__,-r"""" """--.,__‘_‘_‘_
heads tails
Figure 3

A problem closely related to d’Alembert’s was presented by SAVAGE
(1954, p. 65). The decision maker can distinguish several possible ways
of organizing the classes of states of the world but does not know which
organization is the right one. In this case, the Principle of Insufficient
Reason seems to fail, for different probabilities can be calculated for a
particular event. Consider Savage’s example. Two balls are drawn from
an urn that is known to contain either two white balls, two black balls,
or one white ball and one black ball. If we regard these possibilities as
the classes of states of the world, the probability of, for instance,
drawing one white and one black ball is 1/3. For Savage, however, it
also seems possible to distinguish the classes, ‘white, white’, ‘black,
black’, ‘black, white’, and ‘white, black’, so that the probability in
question is 1/2. Fortunately, the problem can be solved. If Savage does
not know any reason why one way of organizing the classes is more
likely than any other, he may refer to the tree diagram of Figure 4 and
assess Lthe probabilities according to the rule developed in the previous
section. As a result, he will obtain an equivalent objective probability of
5/12 for drawing one white ball and one black ball.

/,\KH

first description second description
of states of states
wWWw bw bb WW bw wh bb

Figure 4
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3.2. Partially Known Probabilities: The Step Theory of Probability

Until now, we have only considered the cases of probabilities known
with certainty and probabilities completely unknown. The reality, how-
ever, is between these extreme cases. Typically the decision maker will
have more confidence in some variates of the result vector than in
others, but will by no means feel sure about his judgement if asked to
assess equivalent objective probabilities. He will think instead in terms
of alternative probabilities whose correctness he assesses with differing
degrees of confidence. Asked whether he is able to transform these
degrees of confidence into non-random probabilities he will again shrug
his shoulders and so on.

The suitable model for this kind of multi-level uncertainty is the step
theory of probability developed by Reichensacnh (1935, pp. 305-322).
The basic idea of this theory is used here to transform the imprecise
information, the decision maker possesses into equivalent objective
probabilities. In the framework of preference theory, our exposition
represents a generalization of the approaches by TinTner (1941) and
KreLLE (1968, p. 176) as well as of a short note by RoserTs (1963, p.
329. fn. 5)*. The generalization has two aspects. First, probability
hierarchies are considered in Reichenbach’s sense. Second, allowance is
made for the fact that alternative variates of the probabilities on some
level of this hierarchy are known, but that there is no information on the
plausibility of these variates themselves. It seems worth noting that the
American school of subjectivists, whether we think of Savage or of
[.uce, Raiffa, and Schlaifer, has avoided this problem by assuming that
subjective probabilities can be assessed all at once by questioning
people, by asking them to bet or to take part in games, and by other
similar methods?®’.

To depict multi-level uncertainty we define the following variables:

b >1 current number of the variate of the probability function
of step j—1
i current number of the class of states of the world

Wi(i,),j>1 non-random probability that the probability of step j— 1
takes on the variate with current number j;

W) non-random probability for the occurence of class Z;

H«"ja AN ER T th variate of these probabilities if they are themselves
random variables

0 There are also parallels, however, with an approach of ScHNEEWEISS (1964) and with
Wayesian statistics where a priori distributions of parameters of other distributions and
hence probabilities of the second step are utilized. CrF., e.g., Hevten (1971).

AT Cr, Wink ek (1967a and b).
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w\(z;) implicit non-random probability for the occurence of
class Z;

Wi(z,) kth variate of this probability if it is a random variable

W[Z,-]} equivalent objective probability for the occurence of
class Z;

2 indicates unknown probabilities

With this notation the structure of probability hierarchies can be
described. This will first be done under the assumption that on no step
are there completely unknown probabilities.

3.2.1. Completely Known Probability Hierarchies

Probabilities of Step One

[f all probabilities of the first step are known then there is a given
function W'(i}), ¥ W'(i))=1, associating the classes of states of the
world Z,, Z,, ... with a probability. Thus the case of risk prevails.

Probabilities of Step Two

Now the constancy of function W'(.) is removed. Various variates
Wi(.), Wi(.), ... are possible, which themselves occur with probabilities
W2(1), W2(2), ..., where 143 W?2(i,) = 1. This is the case of known proba-
bilities on the second step that TintNER (1941) associated with uncertain-
ty as such. Note that the variates Wi(.), W3(.), ... comprise complete
probability distributions over the classes of states of the world and are
not defined separately for each class. This construction does not exclude
the possibility that, for single classes, there are non-random probabili-
ties of the first step. In this case, the functions W}(.), Wi(.), ... simply
have to take on the same values over these classes.

From the available information it is possible to calculate an implicitly
determined probability of the first step for each class of states of the
world. This probability is the equivalent objective probability we are
looking for. Since, according to the multiplication theorem of probabi-
lities*®, the probability for a coincidence of class Z, and variate /, of the
probability distribution of the first step is H",-'I{fl} W2(i,), summation
over all variates of the probability distribution of the first step yields*

(16) W(Z,)=W\Z;)= ; Wi Wiiy).

¥ W(ANB)= W(A)W(B/A) in the present case is W' { W,‘ILJHZ,-I} = szj';}mjz{ﬁ }.
4% According to the rule of addition W(AUB)= W(A)+ W(B) - W(A N B) and because
the variates of the probability distribution of the first step are disjoint,
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Probabilities of Higher Steps

Of course W?2(.), too, does not have to be a given function. We have a
problem of uncertainty on the third step if this function can take on the
alternative variates Wi(.), W%{.], ... which, by virtue of another func-
tion, can be associated with probabilities W3(1), W*(2),.... The proba-
bility for a coincidence of class iy, variate i, of the probability distribu-
tion of the first step, and variate iy of the probability distribution of the
second step is W, (i;) Wi,(i,) W*(i3). Thus, summing up over all variates
of the probability distributions of the first and second step we find

(17 W(Z,) = W'(Z;)= L T W) Wili) Wi(ir).

Ly 4

A further generalization is evident. If step j is the first one where non-
random objective probabilities are available, while there are only proba-
bility distributions of probabilities available on lower steps, then

(18) W(Z;)=W\Z)
=T s L TWGW G-
 WE(R) W) Wi(iy).

I«F’(Z,-I) is the implicit objective probability of the first step. It is also the
equivalent objective probability of the class of states of the world we
were seeking.

Criticism

Equations (16)-(18) have in common the characteristic that a proba-
bility distribution for the probability of the first step is replaced by a
non-random probability that equals the expected value of the distribu-
tion:

(19) WZ;) = WNZ;) = EIW(Z)].

Does it make sense to identify this expected value with an equivalent
objective probability? Should we not leave some scope for subjective
risk evaluations so that if Z; brings about a desired situation the opti-
mist will estimate W‘{Z,-l} as being higher than in (18) and the pessimist
will estimate it as being lower? Such an evaluation would be similar to
that revealed in Ellsberg’s experiments, namely, that people have a
particular aversion for unknown probabilities.

As before, however, this aversion cannot stand up to careful exami-
nation. The multi-level uncertainty problem described above can be
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represented by the following urn experiment. From an urn filled with
balls of various colors, a random sample of size i, is drawn. Out of this
sample a subsample of size n, is taken, out of this in turn a subsample of
size n3, and so on until finally only a single ball is taken out. Of course it
is assumed that n, >n, > --- >0. Does it make a difference for the degree
of likelihood of obtaining a ball with a particular color if one ball is
drawn directly from the first urn or if it is drawn in the complicated
step-wise procedure just described? Except in the case of a particular
preference for gambling which was excluded with the Axiom of Orde-
ring, it does not*®, Thus decision problems with multi-level probabilities
that are ultimately known reduce to the case of pure risk.

This solution is certainly very attractive, for it provides an argument
for limiting the analysis to the case of risk. But unfortunately this argu-
ment is not particularly strong for, contrary to Tintner’s contention,
crucial aspects of the uncertainty problem have not yet been taken into
account,

3.2.2. Partly Known Probability Hierarchies

The task of assessing probabilities on higher steps will soon put too
much strain on the decision maker. For example, he might think that
alternative variates of the probabilities of the second step are possible,
but feel incapable of discriminating between them according to their
degree of plausibility.

In such cases the Principle of Insufficient Reason can again be
consulted. If the decision maker has no idea which of the alternative
variates is more plausible than any other, he has to behave as if all
variates were known to occur with an equal objective probability.

This can easily be shown for the general case. Suppose probabilities
on step j+ 1 are unknown while the probability function of step j may
obtain r alternative variates W4(.), W4(.), ..., W4(.). According to (18) the
implicit probability of the first step will then have the same number of
variates W.'{Z;-[J, P"Vi(z,-l), s W,‘[Zgl}, which, in general, are given by

(20) WiZ) =W Y ¥ ... T W G- WG -)

by -2 i S

o Wili) Widia) Wi(in) k=1,2, ..,

Thus the problem of not knowing probabilities of step j+ | reduces to
the problem of unknown probabilities of step two. Assume now that a
particular action g; 1s chosen. Then the result vector can be written in the
form

0 Cf, the remarks about the Axiom of Ordering in section B .
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(21) ef=<W*f“u} W@ .. W*-f‘“(r))

1€ z€; “e r€i

with

ke_;(ﬁﬁkzn WilZy) ... WiZ,)

) o =Y
&5 € i Ein

where the probabilities of step j+ 1 are marked with a star to indicate
complete ignorance. Since this formulation is analogous to (8) we can
now directly use the Principle of Insufficient Reason as given above and
set

(22) W*‘ﬂ"*lq[.tﬁr)=L V=12 ...,r.
r

Since this result can be achieved for any action a;, the problem of uncer-
tainty on higher steps has been reduced to an equivalent multi-level risk
problem as treated in the previous section. Whenever there is an inter-
ruption in the probability hierarchy because probabilities are completely
unknown beyond a certain step, it is wise to behave as if there were
cqual objective probabilities for the variates of the probabilities on the
next lowest step.

3.3. Resuit

The fundamental problem of decision making in an uncertain world is
to reduce all types of risk and uncertainty to a common base. One
extreme type is that of pure risk where there are objective probabilities
known with certainty. Another extreme type is characterized by a
complete ignorance of any probabilities of the possible action-results. It
has been shown that all types can be reduced to the type of pure risk, so
that it can serve as a basis for further analysis.

For the extreme case of completely unknown probabilities, a simple
rule was derived which rehabilitates the Principle of Insufficient
Reason, If the decision maker has no idea at all which probabilities 10
attach to the classes of states of the world, then he should assign the
same probability and should evaluate his action as if these probabilities
were objective values known with certainty. This result relies on only
two, by no means new, but widely accepted axioms: the Axiom of Orde-
ring and the Axiom of Independence.

In practical decision making under uncertainty, case studies are
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frequently used. The Principle of Insufficient Reason then has to be

employed such that each subcase is assigned an equivalent objective

probability equal to the reciprocal value of the number of the subcases.

The probability of a particular class of states of the world is the product

of the probabilities of all cases and subcases that have to be distin-

guished to define this class. In this way the Principle of Insufficient

Reason yields distributions over the classes of states of the world that

are not necessarily uniform.

The decision problems that occur most frequently in real life situa-
tions do not seem to be characterized either by complete ignorance of
objective probabilities or by firm knowledge of such probabilities. If the
decision maker is able to make probability estimates, but does not feel
sure about them, probabilities on higher steps have to be considered.
Two categories can be distinguished.

(1) If probability distributions of probability distributions of ... are
known for the classes of states of the world, then an implicitly given
objective probability of the first step can be calculated. Thus the
case can be reduced to a decision problem under risk.

(2) If on some step the probability distribution takes on alternative
variates for which no probabilities on higher steps are known, then
decisions have to be made as if these variates occurred with equal
objective probabilities. In this way, the multi-level uncertainty
problem, too, can be transformed into an equivalent decision
problem under risk.



