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. Chupter_ Two
Rational Behavior under Risk

In chapter one, general decision problems under uncertainty were
reduced to the case of pure risk. The next question is how the economic
decision maker will evaluate objective risks, that is, what are the proper-
ties of the preference furctional R(.) in the case of objective probabili-
ties. This chapter attempts to give a partial answer which determines
some basic rules for rational behavior under risk. The following chapter
is devoted to the task of formulating a supplementary hypothesis
concerning man’s preferences.

In order to give the problem more structure than was necessary in
chapter one, it is assumed that the result vector ol an cconomic action is
represented by an equivalent objective probability distribution of end-
of-period wealth', V. The decision rule under risk or uncertainty, in a
shortened form, is then

max R(F),

or in words: choose that action out of the set of possible alternatives
which brings about a probability distribution of end-of-period wealth ¥
that maximizes the value of the preference functional R(.). Of course
the limitation to wealth distribntions excludes a number of problems
such as, for example, decisions of life and death, but for typical
cconomic problems under uncertainty, such as portfolio management,
insurance demand, and speculation, the limitation is normally of no
consequence.

In line with the formulation of the decision problem given in chapter
one, we assume in principle that ¥ is a discrete random variable which
(akes on alternative variates v with known probabilities W{v). For

| A more precise definition of the concept of wealih utilized in this book is given at the
beginning ol chapter three,
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analytical purposes, however, it is normally more convenient to utilize
continuous distributions, which may be interpreted as approximations
of underlying discrete distributions?, It is thus assumed that ¥ may also
be a continuous random variable which takes on a particular variate v
with known density f{v). The random variable ¥ will be called ‘probabi-
lity distribution’ without, however, implying anything in advance about
the kind of distribution it is?.

Instead of end-of-period distributions of wealth it is equally possible
to consider the period income distributions. Let @ denote the decision
maker’s non-random initial wealth and assume there is no consumption
(or, in the case of a firm, no dividends). Then

Y=V—-a.

Thus a wealth distribution and its corresponding income distribution
can be constructed from each other by a simple shift of size . The type
of distribution chosen in modelling choice under uncertainty is a matter
of taste. However, because of a particular wealth dependence of risk
evaluation, it will become clear in the next chapter that, in general, it is
better to refer to the distribution of end-of-period wealth. Nevertheless,
for the presentation of some of the preference functionals that have
been proposed in the literature, we prefer to refer to the distribution of
period income. The decision problem will therefore be formulated as
max R(Y) where this seems appropriate.

It is certainly implausible to assume that there are no withdrawls from
wealth for consumption. A realistic assumption would be that, at the
beginning of the period, the decision maker simultaneously chooses the
optimal risk project and his consumption over the period. For the time
being this problem is neglected. In chapter IV the consumption decision
will be taken into account in a full intertemporal approach and it will be

2 A possible procedure for this approximation is as follows. First, the set of real
numbers is divided into classes of size 4. Then the probabilities of all wealth levels falling
into such a class are added and the sum is associated with this class. Finally, a function f{1)
is chosen such that for a class extending symmetrically around 0 and for the probability
W) the equation

b+ 472
W)= [ Audy
ﬂ"d-"z

will hold, which implies that

_ W)
Jin) = 4

3 In contrast to our definition, the integral [ f{u)du is often called *prabability disiribu-
tion of the random variable V.
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shown that our abstraction is not so severe as it might appear at the
moment.

Various proposals for specifying the preference functional R(V') have
been made in the literature. There are three types of decision criteria
under risk which seem fairly incompatible.

- The two-parametric substitutive criteria. From the probability distri-
bution two characteristic numbers are generated to indicate ‘risk’ and
‘return’. The numbers are then evaluated by means of a substitutive
preference function.

- The lexicographic criterion. A preference function is formulated to
evaluate the probabilities of wealth exceeding some critical levels.

- The expected-utility criterion. By means of a given utility function the
end-of-period wealth distribution is transformed into a distribution of
utilities whose mathematical expectation serves as the preference
functional.

Table 1 gives an overview of the decision criteria that have been
proposed in the literature. The meanings of the symbols used are set out
below Table 1 and, as well, are explained by means of an example of a
probability distribution illustrated in Figure 1. Where appropriate, the
table was constructed by reference to end-of-period wealth V, even for
cases where the preference functional was originally designed for
income Y. For criteria b) and e), however, the reference to end-of-
period wealth was not appropriate since negative and positive changes in
wealth must be distinguished.

[
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Table 1
Preference Functionals
[ a) UIM(F), vimax — Gminl L ANGE (1943)
1]
by UIE(Y), — | pfly+a)dy]  Domar and MUSGRAVE (1944)
FISHER (1906, pp. 406-410)
i Hicks (1933), Marscrak (1938),
PRI c) Ulp ol STEINDL (1941), TinTnER (1941),

L Lurz (1951, pp. 179-192),
SBSHwI Markowiz (1952a), Tosin (1958)
criteria e ; (

d) Uly, | (v—0u*)2f(v)du] MarkowrTz (1970, pp. 188-201)
-0
SHACKLE (1952, pp. 9-31),
e) Ur* 3% KRELLE (1957),
iz SCHNEIDER (1964, pp. 89-133)
H. Cramer (1930, pp. 10 and 38),
lexicographic . R. Roy (1952), ENCARNACION (1965),
criterion f) UIW(uz0)...] Haussmann (1968/69),
NacHTKAMP (1969, pp. 117-123, 145)
G. Cramer (1728),
i ’ D. Bernoui 11 (1738),
utility &) EU(V)] :
P s vON NEUMANN and MoORGENSTERN
(1947, pp. 17-29, 617-632)
¥ random variable ‘end-of- f",j- loss (absolute value of strictly
period wealth’ negative values of ¥ or y respec-
r.a variate of V Pon tively)
a wealth at the beginning of Y. ¥ gain (positive values of ¥ or y
period respectively including a ‘gain® of
Y=V-a random variable ‘period Zero)
income’, ‘change in wealh’ i focus loss, equivalent loss
¥ variate of ¥ v* focus gain, equivalent gain
Umasxs Umin  UPpPer, lower boundary of MV} mode (most dense value) of ¥
wealth distribution
g level of disaster
A critical wealth level

probability of survival
mathematical expectation of V
(E(Y) is analogously defined)
variance of V

standard deviation of V
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The criteria mentioned above will be discussed in the following
sections®. We shall not consider those preference functionals which
were constructed for the evaluation of unknown probability distribu-
tions®. They are ruled out from the beginning because, as shown in
chapter one, it is always possible to find equivalent objective probabi-
lities.

The so-called expected-value or mean-value criterion R(V)=E(V)=u,
Loo, is out of the running. In the version E(Y) this criterion is the classi-
cal preference functional for the evaluation of games of chance and its
popularity is due to the fact that, when a game is continuously repeated,
the average gain converges stochastically towards the expected gain®.
However, since multiple risks are excluded for the time being, this argu-
ment does not count. Of course, even for unigue choice situations, the
mean-value criterion has a certain degree of plausibility since it chooses
the center of gravity of a probability distribution to be the preference
functional. Similarly plausible are other parameters of position such as
the mode or the median. The usefulness of such simple position para-
meters must be doubted, however, since they imply that the decision
maker is indifferent between a perhaps widely dispersed probability
distribution and a non-random amount equal to the size of the position
parameter. Such indifference cannot be justified from a normative
point of view and contradicts all experience. The existence of insurance
companies gives a clear indication that the mathematical expectation is
defective, for, in the long run, the premium revenue has to exceed the
indemnification payments. From the view point of the insured this
means that the premium he pays is larger than the expected indemnifica-
tion he receives, i.e., that a game with a negative expected gain is being
played or that, among two end-of-period wealth distributions, the one
with the lower expected value is chosen. Unless this aspect is explained
by the hypothesis that the insurance purchaser systematically overesti-
mates the objective loss probability, preference functionals have to be
constructed that allow for risk aversion by including the dispersion of
the end-of-period wealth distribution in the evaluation procedure. All
criteria discussed below satisfy this requirement,

4 Cf, also the overviews of Arrow (1951), Scaneewess (1967a, pp. 20-26), and
MagkowITZ (1970, pp. 286-297).

Y OFL the introduction ol section 1 B 3.1,

OO oeh IV A
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Section A
The Two-Parametric Substitutive Criteria

An obvious way of taking undesirable dispersions into account is to
represent the probability distribution by one parameter measuring a
mean return (K,) and another parameter measuring risk (X5), and then
to assume a utility function over these parameters:

(1) R(V)=U(K|,K>).

This is the way with criteria a) through e) of Table 1. Of course it is
always assumed that U/, >0'. The role of the second argument is not so
self-evident, so that it is better to distinguish the general cases

<0 risk aversion,
(2) U, < =0 risk neutrality,
>0 risk loving.

It 1s, however, usual, in the light of the insurance phenomenon, to
consider the case U, <0 as the only one of practical relevance. In what
follows, therefore, no more time will be wasted on the other possibili-
ties.

Often the preference structure is illustrated graphically in a (K, K5)
diagram by means of indifference curves on which, by definition,
R(V)=U(K,,K,;)=const. For K,>0 they are positively sloped *:

d_'ﬁ'r_l = _y_l}ﬂ_
dﬁz L= const. Ul

(3)
In addition, they are also usually assumed to be convex because of a
‘decreasing willingness to bear uncertainty’>. Examples of such curves
are shown in Figure* 2.

I We denote by f; the derivative of a function f{.) with respect to its ith argument.
Accordingly fj; indicates a derivative with respect to / and j.

=

2 It will be shown later that, for the (u, @) criterion, the indifference curves have to
enter the u axis perpendicularly. Cf. equation (11 D 52).
3 LanGE (1941, p. 183).
4 Because of
% i(dfﬁ )+ dK _g_(dxl ! )_ —UiUn+2Up U, Uy UsUY,
dk3 \U 3K, dK: WU/ dks U aK, \dk, U/ S
the convexity of the indifference curves requires a cardinal function U(K |, K'2) with al least
one negative second-order partial derivative or a negative partial cross derivative. Only
Domar and Musceave (1944, p. 402) mention the sulficient conditions Usa<0, <0,
and U>=0.
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direction

of
preference

Figure 2

In addition to the indifference curves, the (K, K,) diagram contains
an opportunity locus consisting of a number of points, each of which
represents one of the attainable end-of-period wealth distributions and
thus one of the rows of the decision matrix. By use of the indifference
curves it is easy to find the best distribution. Where there is a continuum
of distributions, the procedure is that first the so-called efficiency
frontier is determined by taking the north-east boundary of the oppor-
tunity set and then, by means of a tangency solution, one point at least
on this boundary is found to be optimal.

For criteria a) through d) in Table 1, the starting point (e.g. O,) of an
indifference curve at the K, axis is the so-called certainty equivalent,
S(V), of those wealth distributions which are located on this indiffe-
rence curve. The certainty equivalent is a non-random level of end-of-
period wealth that is equal in value to these distributions. The difference
between the value of the position parameter K, and the certainty equiva-
lent (e.g. m] is called the subjective price of risk, m. The subjective
price of risk measures the largest reduction of the position parameter
which the decision maker would be willing to accept if his wealth
distribution were exchanged for a non-random level of wealth.

|. Lange’s Criterion
R{ V} - U[M[ V}r Uinax — UII’LirI]

LanGeE (1943) assumes that, in general, the decision maker is
conlronted with a subjective probability distribution. For the sake of
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analytical simplicity, however, he further assumes that only the range
and the mode are known (p. 182).

The question is whether essential information will be overlooked
when such a qualification is made, This will indeed be the case as can
easily be shown with the aid of Figure 3. The two probability distribu-
tions A and B in this figure are mirror images of each other on either
side of a vertical line through the mode. Thus they can be considered
equal with respect to Lange's distribution parameters. Nevertheless,
distribution B is likely to be preferred by the typical decision maker,
since values of v <M(V') occur with a lower, the value v = M(V) with the
same, and values of v>M(V) with a higher probability density than in
distribution A4.

[t 1s mot surprising, therefore, that Lange’s criterion has not been
taken up in the literature.

fv)

- " : e r
l‘Im‘lln M { V] FH‘I.B!I. umu

Fieure 3
2. The Domar-Musgrave Criterion
]
R(V)=UIE(Y), = | yf(y+a)dy]

Domar and MusGrave (1944) maintain the classical measure’ E(Y) as
the measure of returns (X). With regard to the risk measure (X,), they
consider that both the probability of loss and the expected size of loss
are relevant®. Thus they feel it is natural to take the sum of the products

> Domar and Musgrave formulate their preference functional with reference to a
percentage change in initial wealth a. This peculiarity is unimportant in the present context
sINce & = ¢onst.

6 A preference functional that is based on the expected value and the probability of loss
is discussed by ScHNEEWEISS (19672, pp. 57-60) and has been mentioned by A D. Row
(1952, p. 433). Arcais (1952, pp. 317-320) also took it into consideration: ¢f. the discus-
sion by Marschak, Allais, and Savage of SAMUELSON (1952a, pp. 151-155).
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of all possible losses and their probabilities as a risk measure. Since the
probability of loss is defined as

(@) Wy<0)= | fy+a)dy
and the loss expectation as
0
= yorady
5 E(Y)=——
(3) (Y) W(y<0)

the Domar-Musgrave risk measure can be expressed as the product of
loss expectation and loss probability:

(6) Ky=E(Y)W(y<0).

It is not difficult to guess why the authors chose this approach when it
is realized that, among other aspects, they intended to study the
influence of an income tax without loss offset on the evaluation of given
probability distributions. With their definition, the size of ‘risk’ is not
affected by the tax, which is an important analytical simplification.
Most of the other measures of risk would have created greater pro-
blems.

It therefore is not difficult to show the deficiencies in the approach.
Analogously to (5), define the mathematical expectation of positive
changes in wealth as

" g yf(y+a)dy
(7 E(Y)=

W(y=0)

I"hen the preference functional becomes
(8) R(V) = UW(y=0E(Y) — W(y<0)E(Y), W(y<0)E(Y)].

This formulation shows that the shape of the density function may be
arbitrarily modified for positive and negative changes in wealth as long
as Lhe respective partial expectations and the probability of loss remain
unchanged. We are thus back to the deficiency of the mean-value crite-
rion although now on another level. So the Domar-Musgrave approach
did not become popular either’.

' The approach was applied by Brown (1957 /58). An exlensive critique is given by
Wi (195960,
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3. The (u,a) Criterion
R(V)=U[E(V), a(V)]

Irving Fisuer (1906, pp. 406-410) seems to have been the first to
suggest an evaluation of economic probability distributions by means of
their mean value (u=E(V)) and their standard deviation (o=a(V)
=VE{[V—E(V)]*}). Later this approach was also discussed by Hicks
(1933), Marscuak (1938), StemnoL® (1941), TINTNER (1941), and F. and
V. Lurz (1951, pp. 179-192). Since its application to problems of port-
folio analysis by Markowitz (1952a) and TosiN (1958), the (u, o) crite-
rion has become the most frequently used two-parametric approach.

In comparison to the risk measure of Domar and Musgrave, the
standard deviation has the advantage of reacting to a change in the dis-
persion given the partial expectations for positive and negative changes
in wealth and given the loss probability. This can easily be seen by split-
ting up the total variance into?

9) (V) = W(y<O)aX(Y)+EXY)]
+ W(y=0)[oX(Y)+EXY)] — EXY).

If, given W(y<0), E(Y), and E(Y), the partial variances o(Y) and
a?(Y) are changed, then the total variance changes in the same direc-
tion. The Domar-Musgrave risk measure would not have detected this
change.

However, other cases can be constructed where the (u, o) criterion

¥ Steindl develops the (g, @) criterion in a somewhat disguised form. 1f, in line with our
initial assumption, his multiperiod approach is reduced 1o one period, then it can be
expressed as

R(V)=8(V)=a+ =T Ulp, a),
|+ r+ ki{a)

where ris the rate of interest and A(.) is a subjective risk evaluation function. Since Steindl
assumes (pp. 50 £.) A'(.) =0 and A"(.) =0, this approach implies the normal properties of
indifference curves in a (u, o) diagram:

dy
da

ﬂ_

=—— — h'a}>0
U 1+r+A(g)

and

d3#| . R
da U 1+r+h(o)

k(o) >0,

% The cquation is developed in appendix 1 of this chapter.
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does not appear to be so attractive. Mirror, for example, distribution 4
of Figure 4 on a vertical line at its expected value so that distribution B is
created. Then the mean, the standard deviation, and hence also the
value of the preference functional are unchanged. The Domar-
Musgrave criterion however points to a clear improvement since given
E(Y) the risk measure is reduced via W{y<0) and E(Y) at the same
lime.

fiv+a) B A

T

= a E(l) I
¥ 0 E(Y) .I*
Figure 4

4. The Mean-Semivariance Criterion

u*

R(V)=UIEWV), | (v—v*)*f(v)dv]

Since, according to the (u, o) criterion, it does not matter whether
changes in dispersion occur in the range of high or low levels of wealth,
Markowitz (1970, pp. 188-201) suggests replacing the variance by the
semivariance

(10) g (V) = ui (v—v*y flv)dv.

He does not say very much about the position of the critical wealth level

1*, It is, however, worth nothing that v* may arbitrarily take on a level

that is independent of the distribution to be evaluated or may take on a

level equal to the expected value of the respective distribution (v*=u).
If the semivariance is written as'’

(11) J;}.{ VY= Wu<u*Ha* (V*)+[E(V*) - u¥]4 Y,

I See appendis 2 of this chapter
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where V* denotes wealth levels smaller than v*, then it is obvious that
the mirroring illustrated in Figure 4 leads to a diminution of W(v<u*),
a*(¥'*), and [E(V*)—v*]? if u*=a. Thus, for the example considered,
the semivariance indicates a clear improvement,

Moreover, like the variance itself, the semivariance reflects changes in
the dispersion of losses given the expectation and probability of loss.
This follows immediately from (11).

Thus it seems that the semivariance combines the advantages of the
Domar-Musgrave risk measure and the variance. However, it also has
its deficiencies. Although the disperson above v* might be relatively
unimportant to the decision maker, does it make sense to assume that he
will ignore it completely?

5. The Criterion of Equivalent Gains and Losses
R(VY=U(@y*y*)

As distinct from approaches that rely on the other two-parametric
criteria, the approaches of SuackLe (1952, pp. 9-31), KreLLE (1957),
and H. ScunEIDER (1964, pp. 96-186) do not use statistical distribution
parameters as risk (K,) and return (K;) measures. They prefer subjecti-
vely assessed index numbers of the distributions to be evaluated. Thus
there are two ways in which the decision maker’s preferences affect the
evaluation of a probability distribution. The first is the usual one via the
shapes of indifference curves in a (K,,K,) diagram. The second is
through the formulation of these index numbers.

5.1. Shackle’s Approach

Maintaining the interpretation indicated in chapter one, namely that
Shackle’s degree of potential surprise is basically a converse probabi-
lity'" we can illustrate his theory with reference to Figure 5.

The bell-shaped curve represents a usual probability distribution. By
a suitable choice of two parameters, called focus gain (¥ *) and focus
loss (¥ *), the probability distribution is measured and then, by the use
of these parameters, a point in the (K, K;) diagram of Figure 2 is deter-
mined. The measuring is done by means of so-called contour lines that,
in the above figure, enter the auxiliary line parallel to the abscissa. In
the range of gains, the contour lines indicate combinations of the level
of gain and the probability density which the decision maker considers

' Cf. chapter | B 1 in this book and Krevie (1957, pp. 648-651).
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fv)

Ll

=
=

Figtire 5

to be equally attractive. Similarly, in the range of losses, the contour
lines represent points of equal deterrence. Applying the proverb that a
chain is only as strong as its weakest link, Shackle contends that a
probability distribution should only be measured by the positions of the
outermost contour lines they reach. In Figure 5 these positions are
characterized by y * and y *.

However, it scems that this contention is the weakest link in Shackle’s
chain of reasoning. It is hard to believe that, as long as the points of
langency A and B remain unchanged, the decision maker is indifferent
1o arbitrary modifications of the probability distribution,

§.2. The Krelle-Schneider Approach

Thus it is easy to understand why Krelle and Schneider suggest
employing the total shape of the probability distribution in the assess-
ment of the index numbers p * and y *, which they call equivalent gain
und equivalent loss. They transform the probability distribution to a
subjectively equivalent binary distribution which has one variate on
ench of the positive and the negative parts of the income axis with given,
but arbitrary probabilities w and w, 0<w<1,0<w<1, w+w=1. The
two variates are the index numbers sought.

The uniqueness of the equivalent binary distribution is a problem
with this approach. If a point in the (¥ * y *)diagram is found that
represents a particular probability distribution, then the indifference
ciirve passing through this point is the geometrical locus of all other
points that represent this probability distribution just as well as the
original point does. The opportunity locus would then itself consist of a
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set of indifference curves, and the conceptions of equivalent gain and
equivalent loss would lose their meaning.

Krelle and Schneider try to circumvent the problem. They develop
procedures, similar to each other, by which it is possible to construct, in
a step-wise fashion, unique'? equivalent binary distributions. However,
which equivalent gains and losses are determined depends on the arbi-
trary characteristics of the procedures.

Consider, for example, Schneider’s transformation procedure'3,
There are different transformation steps. On each step the probability
distribution is altered without changing its value from the viewpoint of
the decision maker. First the gain and loss distribution are both replaced
by one variate each, without altering the gain or loss probabilities as
such, Then these two probabilities are compared with w and w. If the
probability of gaining is greater than w, it is reduced to w, the diffe-
rence being assigned to a nullchance'®, and the variate on the positive
income axis is altered to create the required indifference to the original
distribution. Then the nullchance is removed and its probability is
utilized to increase the probability of the variate on the negative income
axis. Finally, the variate on the negative income axis has to be adjusted
appropriately, so as to ensure indifference. If the loss probability
exceeds w, the procedure is analogous.

Why is there a nullchance and not a $ 14.25 chance? Why are the
probabilities not adjusted to w and w in one step only? If one of these
possibilities were chosen, different values for the equivalent gains and
losses would be calculated.

The equivalent gains and losses, therefore, cannot be interpreted as
subjective central values. Would it not be better to dispense with the
whole idea of constructing an equivalent ‘two-point’ distribution and to
construct instead an equivalent ‘one-point’ distribution, that is, the
certainty equivalent of the distribution to be evaluated? What is the
advantage of the intermediate step?

12 SCHNEIDER (1964, pp. 110 £.) does not exclude the possibility that, with his proce-
dure, a probability distribution may be represented by two different points in a (' * 7 *)
diagram depending on how the transformation procedure starts. A similar problem does
not arise in Krelle's case since he assumes the (additive!) von Neumann-Morgenstern
utility concept. However, since Schneider (pp. 98-101) accepts CHURCHMAN'S (1961, pp.
225-232) axiom system, from which such a utility concept follows, the ambiguity cannot
appear in his model either. Cf. section 11 D 2.1.2.

'3 ScuNEIDER (1964, pp. 101-103, 106 f.). The same could be shown for KeELLE (1957).

14 Cf, KreLLE (1961, pp. 90 1.).
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KrELLE (1968, esp. p. 143) obviously no longer sees an advantage, for
he replaces the conception by the expected-utility approach that in any
case was underlying his analysis!®. However, Schneider, uses the inter-
mediate step for analyzing the influence of income taxes on the evalua-
tion of risk projects. Since income taxes normally only affect the
positive part of income distribution (¥ >0), it certainly makes sense in
this case to distinguish between gains and losses.

However, there are fundamental problems of application. Under the
influence of taxation the opportunity locus depicted in Figure 2 is
subject to shift. For example, an income tax of 50% without loss offset
reduces all profits of the original distributions by 50%. To find out how
this affects the equivalent gains, it would be necessary to carry out the
transformation procedure for each after-tax distribution of Y. Unfortu-
nately, however, because of the generality of the described transforma-
tion procedure!® not very much can be said about the relationship
between the equivalent gains before and after taxation. Thus the
applicability of the theory is not shown. What has been shown is that it
needs to be supplemented by an ad-hoc assumption. It is assumed,
although only for the sake of approximation (pp. 136 a. 156), that,
under an income tax of 50%, the equivalent gains will also fall by 50%.

6. Limits and Possibilities of the Statistical Criteria

Thus we return to the criteria utilizing statistical distribution para-
meters although, as mentioned earlier, these also have their disadvan-
tages. These disadvantages have the same general cause. A priori it is
unlikely that people formulate their preference orderings over probabi-
lity distributions with respect only to statistical parameters'”. It there-
fore seems evident that a completely correct preference functional can
be constructed only if the arguments of this functional can perfectly
describe the distribution. For arbitrarily shaped probability distribu-
tions such a perfect description is generally impossible, however.

Of course, an attempt could be made to increase the number of para-

IY The retreat from the original concept had already begun in KrReLLE's ‘Preistheorie’
(1961, pp. 81-107, 588-610) where a (v *, ¥ *) diagram can no longer be found.

16 Since, in Krelle's approach, there is a given ‘Chancenpriiferenzfeld’, it would, in
principle, be possible to calculate the equivalent net gains.

7 14 can be shiown that, Tor o preference Tuncltional according to Weber's law, which
will be derived in chapter three of this ook, this case can indeed be excluded.
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meters. For example, the (u, o) criterion could be extended by adding
the third moment !8

(12) E{[V-E(V)},
which is a measure of skewedness, the fourth moment

(13) E{[V-E(V)]*},

that measures particular aspects of curvature, and still other moments.
But, although in this way it is possible to describe the distribution more
accurately, a perfectly exact description of all possible distributions
cannot be given with a finite number of moments.

Fortunately, in reality, the problem does not always arise in this
severe form so that our criticism loses much of its force. The reason is
that it is often possible to indicate a typical class of distributions for all
clements of the opportunity set. To establish a preference ordering for
the members of this class, a signficantly smaller number of moments is
normally sufficient. Linear distribution classes in particular seem to
occur very frequently.

It is said that the random variables V), V5, ... form a linear class if
their standardized values

(14) 7 = L=V
a(V;)
with E(Z)=0
and o(Z)=1

have the same density function f.(z;0, 1). Within a linear class all distri-
butions can be transformed into one another merely by a shift and a
proportional extension. For example, since E(V) acts as a measure for

1% Often the moments are used in their standardized forms

)] =2
=F d Mi;=E - ;
4 F[( a(V) ) chae a(¥) )

A positive sign of the third moment indicates a right skewed distribution. The fourth
moment is a measure of ‘peakedness’, Since a normal distribution has M, =3, the measure
M4—3 can be interpreted as follows:

‘more pcakm:l]

= :
M‘_il-{ ]ﬂ Y {‘ﬂatler

than with a normal distribution’. Cf. Stance (1970, pp. 86-89).
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the shift and (V) as a measure for the extension around the mean,
these two parameters are sufficient to characterize the whole distribu-
tion, given the shape of the standardized distribution. They can thus be
used to construct arbitrary preference functionals'®27,

In chapter V of this book two practical problems will be considered
where linear classes occur in an exact form. Linear classes are, however,
important also because the class of normal distributions, which is one of
these classes, can often be used as a good approximation for the class of
distributions occurring in real-life decision problems®. The reason is
that the real-life distributions often originate by adding independent
random variables. If many such random variables are added, then,
according to the Central Limit Theorem of Lyapunow, the standardized
distribution of the sum approximates the standard normal distribu-
tion22. A necessary assumption is that the variances of the added

19 The argument has been raised by Tomn (1958, p. 12) as a defense of the (4, o)
approach. Fisier (1906, p. 408), too, seems to have had it in mind. It is not clear whether
he was thinking of a linear class in general or of the special case of a normal distribution.
His numerical examples suggest the latter. Cf, also SCHNEEWEISS (19674, pp. 121-129).

20 Thore (1971, p. 262) criticizes the (y, ¢) criterion since it does nol discriminate o
priori between two distributions V) and V; that spread evenly between the values (1,3) and
(10, 100) (such that E(V)) < E(V3) and a(F2) =a(¥})) although clearly V3> V. This criti-
cism is not substantial. Since both the distributions he assumes belong to a linear class of
rectangle distributions, the members of which can all be exactly represcnted in a (o)
diagram, the better distribution can be selected by reference to suitably constructed indif-
lerence curves.

21 An example is the distribution of returns in a well diversified portfolio. Cf. ¢h. V A,

22 In the case of a normal distribution the density function of a random variable
standardized according to (14) is
e—052

1
J:Az;0, ”_E

By integration this yields

1
Wiz<z*)=-=— | e 05 bz,
27
I'his expression is the subject of the Central Limit Theorem. This theorem says that, for a
siim of independent (arbitrarily distributed) random variables X1, X2, ... Xp with variates
Y1, X2, ..., ¥, the following relationship holds:

, . I
lim W xi<e|=—— | & "z
i=1

H—+oo ﬁ;f—r.n

H_E( ;i::fxrf) 3 fitﬂxpl

ﬂ(ainx") Vlikgl{;{,-] 3%

with 1=
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variables exist; since, in economic problems, all conceivable distribu-
tions are bounded from above and below, this assumption is always
satisfied #3.

Although the preceding discussion referred to the parameters u and o,
it supports equally well the use of other statistical parameters®*. If the
standardized form of the distribution is given, then, for known E(V),
the exact form of a distribution ¥ can, for example, also be determined
if the Domar-Musgrave risk measure or the semivariance is known?®,
Even Lange’s criterion would be completely satisfactory, for the shape
of ¥ could be completely described with the range and the mode?.

Therefore, the statistical two-parametric criteria after all appear in a
very favorable light. Nevertheless, it must be admitted that there are a
number of problems in practical decision making under uncertainty
where linear distribution classes do not prevail. Moreover, concerning
the approximation by a normal distribution, it should not be forgotten
that the relevant sums are often rather small and that there are mutual
dependencies between the variables added. In this case the Central Limit
Theorem is not applicable. Thus a preference ordering based on two
parameters often cannot be more than an approximation of the true
preference ordering. This approximation can be improved by the use of
additional distribution parameters. How far to proceed with this
improvement is a problem of the economics of economic research. Most
authors do not think it worth-while to employ a third parameter?’.
Moreover, the majority of the founders of economic theory limited
their attention to only one parameter, without, however, saying which
one. Perhaps these remarks put into the right perspective what ToBin
(1969, p. 14) called ‘the modest endeavour of doubling the number of
parameters’.

A proof is given in Fisz (1970, pp. 241-251). It must be siressed once again that the
standardized version of the distribution of the sum becomes normal. It is also possible to
say that the non-standardized distribution will become relatively more similar to a distri-
bution which is developed from the standard distribution and has the same mean and
variance. This, however, does not mean that the distance between points of equal density
in the two distributions will vanish absolurely.

23 Cf., however, Fama (1968, p. 30) and Fama and MiLLER (1972, pp. 259-265).

24 Cf. Tosin (1958, p. 12).

25 It must be assumed, however, that the distributions are such that the risk measures
do not have a value of zero.

26 In the case of the unbounded normal distribution the range has to be replaced by
another measure of risk; for example, as LanGE (1943, p. 182, footnote) suggests, by the
distance between the lowest and the highest percentiles.

27 Three parameters are considered by Cramenr (1930, p. 50), Marscuak (1938, p.
320), Hicks (1967, pp. 117-125), and JeaN (1971).
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Section B
The Lexicographic Criterion

The decision criteria examined above have one thing in common: the
substitutability between risk and return. With the lexicographic crite-
rion, it is different. Here the decision maker is supposed to maximize
the probabilities of wealth exceeding some critical levels. Safety firstis a
suitable slogan for characterizing the underlying preference. In the
simplest case, which will be discussed first, there is only one critical
level, the disaster level (0). A modified version with multiple critical
levels will be discussed later.

1. The Unconditional Maximization of the Probability of Survival

1.1. The Formal Approach

The theory of lexicographic preferences was developed by Rene Roy
(1943) but got its name from the ‘lexikographische Anordnung von
Mengen’ (lexicographic ordering of sets) formalized by HAUSDORFF
(1914, p. 78)1. ENCARNACION (1965) and Nacutkamp (1969) extended it to
the case of uncertainty. Lexicographic criteria for decision making
under uncertainty have also been employed by H. CRAMER (1930), A.D.
Roy (1952), and HAUSSMANN (1968/69).

By referring to Hausdorff’s formulation, the basic idea of the theory
can be described as follows. The decision maker’s task is to compare
iwo commodity bundles (a, b) and (a’,b’), where a,a’ and b, b’ indicate
the quantities of goods A and B respectively in the two bundles. A
lexicographic ordering then implies

(1) that (a,b) {3} (a’b")
if, and only if,
either a{sta’
or a=a’, but b{z}b’
and that (a,b) — (@', D)
if, and only if, a=a’
and b="b'.

I'hus a choice is made first with reference to the quantity of goods of
type A. The bundle with the larger quantity of these is preferred whether

L The theory was extended by GrorGrscou-ROEGEN {1954), CHipMAN (1960), BANERIEE
(1964), Encarnacion (1964 and b), Frerauson (1966), und others.
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or not the other bundle is better in terms of goods of type B. Only if
both bundles are equal with respect to the predominant good A, is good
B considered?.

What are the implications of this basic idea for decision making under
uncertainty? If, for example, we have the choice problem of the firm in
mind, then A4 could plausibly be interpreted as the aim of economic
survival that dominates some other aim B. Suppose there is no policy
available that guarantees survival with absolute certainty. Then the best
that can be done is to take the one that maximizes the survival probabi-
lity W(v > 0). This probability corresponds tc the parameters ¢ and a’ in
the above formulation. Analogously, the parameters b and b’ can be
interpreted as probabilities of attaining the second-order aim B. This
aim is not considered as long as it is possible to find a policy that is
unambiguously better with respect to the aim of survival. Under this
constraint the preference functional therefore is

@) R(V) = W(u=0)= | f(v)dv.

A.D. Rov (1952) introduced a certain modification to this basic
concept. He assumed that the decision maker knows the variance and
the expected value, but not the shape, of the probability distribution.
With this limited information it is impossible to calculate the survival
probability. It is, however, possible to determine a lower bound for it.
This is done with the aid of Chebyshev’s inequality’:

2

(3) W[|u-E{V]]££]31-(ﬂ?) >0,

If we set e=E(V)— 0 and drop the absolute-value operators, since we
are only interested in the negative deviations from the expected value,
we obtain the expression

* [_a¥) \
) WIE(V) —v=<E(V)—0]1=W(u=0)=] (Em_ﬁ)

which describes a lower bound to the probability of survival. Since the
quotient [E(¥)— d]/a(V) can be derived from this lower bound through

> The term ‘lexicographic’ is used because the ordering is like that in a lexicon.
* For a derivation of this inequality see, e.g., STANGE {1970, pp. 157 .}
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a strictly positive monotonic transformation, it can, in the absence of a
better solution, be used as a preference functional®;

(5) ﬁ( V)= g_lﬂ___u

a(V)

Although the idea that the rational (!) decision maker does not know
subjective probabilities cannot be accepted, Roy’s approach neverthe-
less suggests a very useful application of the (w, o) principle. Roy
(p. 434) remarks that utilizing R(V) will not only maximize the lower
bound of survival probability, but also the survival probability itself, if
a choice from a class of normal distributions is made’. However, it is
not in fact necessary to limit attention to this class. For each linear
distribution class, the use of R(¥) maximizes the probability of survi-
val®, It is easy to understand this if equation (A 14) is recalled and (2) is
written in the standardized form

(6) RWV)= | fuz:0,1)dz.
- R(V)

This expression proves that R(V) and R(V) can be produced from one
another by a strictly positive monotonic transformation and will thus
result in the same preference ordering’.

Figure 6 shows how, with the aid of the (u, o) diagram, the probabi-
lity distribution with the highest survival probability can be found. The
rays starting from 0 connect points with equal probability of survival,
for on these rays [E(V)— 6)/a(V)=const.’. The survival probability is
an increasing function of the angle ¢ between such a ray and the

4 Roy considers the upper limit of the disaster probability rather than the lower limit of
the survival probability. OF course, this is the same problem,

4 Cf. footnote 22 in section A,

6 1t was shown in section A 6 that, in the case of a linear distribution class, any kind of
preference structure can be represented in a (u, o) diagram. Cf. PyLE and TUurRNOVSKY
(1970) and Levy and Sarnat (1972) for the possibility of representing the lexicographic
b,

! There are parallels lo Nacutkamp's (1969) model where a firm is able to evaluate
probability distributions of demand quantities without knowing the shapes of these distri-
biutions (pp. 164-176).

E In Roy's case of unknown distributions, the positively sloped rays connect points of
equal lower hound and the negatively sloped rays connect points of equal upper bound to
the survival probability. The latter information is, of course, irrelevant. But even in the
cise ol positive slopes, the probability information is only useful if the slope is > 1, for
otherwise (4) would yvield the useless information that the survival probability is greater
thun zero (slope = 1) or greater than a negative number (slope< 1).
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abscissa. Thus the safest project is indicated by the highest point of
tangency of a ray with the opportunity locus, which is suggested in the
figure by the curved segment with the shaded area underneath.

Since in the figure there is only one point of tangency, there is a
unique risk project maximizing the probability of survival. With diffe-
rently shaped opportunity loci, multiple points of tangency may occur
so that lower-order aims have to be considered before a decision can be
made. Thus the rays starting from ¢ are not indifference curves. *Indif-
ference’ prevails with respect to the predominant aim but not necessarily
with respect to lower-ranking aims. Following CHipmAN's (1960, p. 202)
suggestion we could therefore call these rays pseudo indifference curves.

&
ot - I[=
wi o Jotka(l)

I
W[!::wﬁ]::—] f
=3 = ar )
v AL Ten i) : symmetrical
Wie>p)< J distributions

Figure 6

Another case where the aim of maximizing the survival probability
does not lead to a unique solution is that where the opportunity locus
either exceeds the upper boundary ray or is situated below the lower
boundary ray. Such boundary rays will occur if the linear distribution
class has a standardized distribution that is bounded from above and
below as shown in Figure 7. If —k is the highest lower bound and +k
the lowest upper bound to the standardized variable z then the survival
probability is

(7) W(uzﬁjz[{l}]ﬁ.&'{l/} IEEHW{V]}.

<=i—ka(V)

So much for the formal aspects of the theory. A much more signifi-
cant question is whether there is in fact an insolvency level of wealth
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i
f.(z;0,1)
-k =1 @ .51 " T
n—ko p—a Y H+e ptko v
Fieure 7

that plays a crucial role in economic decision making under uncertainty
and, if there is, what is its value.

1.2. The Problem of the Disaster Level

To ensure that the unconditional maximization of the survival proba-
bility makes sense, there must be somewhere a disaster level of wealth
below which total collapse occurs. The collapse must occur abruptly at
this level. By how far wealth is below the disaster level does not really
matter. The same applies to survival. The crucial thing is to survive at
all, how weH is not so important. The slightest reduction in the
probability of survival is a change for the worse, even if all the treasures
of the earth are gained in exchange.

For an individual, absolute disaster naturally means physical death.
But we are not normally concerned with matters of life and death in
typical economic decision making. Here disaster is better interpreted as,
what for many people is nearly as bad as death, the destruction of their
whole way of life through the loss of all their property. In this case 0=0.
Whether at v= 0 =0 there is in fact a level of disaster in the strict lexico-
graphic sense is an empirical question that cannot be answered here. But
if there is a lexicographic critical wealth level at all, it will be zero.

There are, however, reasons to believe that a lexicographic level of
disaster is not a very typical feature of man’s preferences. To gain
pecuniary advantages most people drive a car and so risk their lives.
Similarly, many people are unwilling to buy liability insurance although
insurance is a protection against being reduced to beggary. But there are
also people who do go out of their way to buy liability insurance and are
frightened even at the thought of driving a car. Perhaps there are lexico-
praphic wealth levels for a few people, although not for many. We leave
this an open question,
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If the decisions of the firm rather than those of the individual or the
household are considered, disaster means insolvency: the firm cannot
meet its liabilities, bankruptcy proceedings are instituted. Following
Fisuer (1906, p. 82), a distinction can be made between pseudo insol-
vency and frue insolvency. A pseudo insolvency originates from short-
run liquidity problems without the debt exceeding the value of the firm’s
capital. With patience on the part of creditors, pseudo insolvency
normally can be avoided by a reorganization of the structure of debt. In
the case of true insolvency, however, the equity capital is not sufficient
to satisfy all creditors.

In the case of pseudo insolvency no critical level of wealth in the
lexicographic sense can be established. Suppose, because of the intole-
rance of creditors, a pseudo insolvency could lead to bankruptcy. Then
the firm’s management, whose predominant aim it is to avoid this situa-
tion, will certainly include liquidity planning in its policy. As long as it is
prepared to bear the interest costs, the management can always increase
the degree of liquidity by, at the same time, lending short and borrowing
long. Thus the level of insolvency itself is a planning variable and the
concept of an unconditional maximization of the survival probability
loses its meaning.

The situation is completely different if a further increase in the degree
of liquidity is impossible, since no more security is available for the
creditors. This is the case if the volume of long-term debt equals the
firm’s stock of capital. Thus true insolvency occurs when the total liable
wealth of the firm's owners is lost. As in the case of a single individual,
we therefore arrive at the conclusion: if there is a lexicographic critical
wealth level, then it will occur at v=0=0.

2. Aspiration Levels and Saturation Probabilities: A Pragmatic View

The unconditional maximization of the survival probability implies a
degree of risk averse behavior so extreme that it is hardly ever obser-
vable in reality. And, even if it occurs, the typical entrepreneur, so
convincingly portrayed by ScuumpeTeR (1942), definitely does not show
it. Figure 8 demonstrates the behavioral implication of the degree of risk
aversion contended by lexicographic preference theory. For the kind of
opportunity set assumed in this figure, in the case where 6=0, the
decision maker chooses project A although it provides a dramatically
low expected value of end-of-period wealth. This is not very plausible.
Another implausible aspect is the lack of any subjective element in the
choice of the optimal risk project®: according to the preceding section,

% In the case of uncertainty there is, however, a subjective scope insofar as people are
differently informed and will therefore assess different objective probabilities.
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=0 will hold for all decision makers and hence they will all choose the
same project from a given opportunity set.

It is therefore an obvious modification of this approach to replace the
disaster level with some higher aspiration level of wealth that is deter-
mined by the particular preferences of the individual decision maker.
For example, for the decision problem of the firm we could follow
NacHTkamp (1969, p. 120) and choose a critical wealth level that would
be achieved if the current profits reached the level of the previous year.
Or we could, as CraMmER (1930, p. 10) and ENCARNACION (1964a, p. 113)
suggest, choose that level of wealth which allows the usual dividends to
be paid. Arbitrarily chosen other wealth levels could also be considered.
In all these cases a project would be chosen out of the opportunity set
depicted in Figure 8 that is characterized not only by a higher expected
wealth level, but also by a higher standard deviation. Revealed risk aver-
sion obviously would be smaller. If, as an extreme case, a critical level
of wealth equal to the maximum expected level is chosen, then risk
aversion would be eliminated altogether 10 This casc is represented by
point B in Figure 8.

o
[=E(V)]

Figure 8

Although the basic idea of the aspiration level has some appeal, it is
nevertheless questionable whether aspiration levels satisfy the strong
requirements of lexicographic critical wealth levels. Is it plausible to
assume that the decision maker would not be willing to accept a slight
increase in the probability of failing to achieve the aspiration level if, in
exchange, he gets a kingdom if he does achieve it? The answer that most
people will give to this question seems obvious.

Moreover, even if there is an aspiration level (,) in the lexicographic

10 ¢f the definition of risk aversion given at the beginning of section A.
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sense, this does not mean that the level of true insolvency, call it now §,,
loses its significance. The predominant aim still is to maximize the
probability that wealth exceeds the insolvency level. Thus the introduc-
tion of aspiration levels does not in itself produce more plausible
behavioral implications.

The way out of this dilemma is to introduce a safuration level
W*u=10,) for the survival probability!!, analogous to the saturation
level that R. Roy (1943) used for the case of commodity consumption.
All projects with a higher probability of survival may then be considered
as equivalent with respect to the predominant aim and the probability of
reaching a particular aspiration level determines the ultimate choice
among these projects. A more precise definition of this preference struc-
ture can be given by reference to Hausdorff’s formulation (1) if, for a
particular project, we set

(8) a=min[W(v=0;), WH*u=0;)l,
b= W=0)

and define @’ and b’ analogously for a comparable project.

Of course, there is no particular reason why there should be only two
critical levels of wealth. There may be a saturation level for the probabi-
lity of exceeding the aspiration level, so that another aim of lower order
appears on the scene. If there is a saturation level for the probability of
reaching this aim, a further aim may be considered and so on. The
various aims do not have to be pecuniary. However, since we agreed to
analyze wealth distributions, a hypothesis of NacHTkamp (1969, p. 120)
according to which there are multiple critical wealth levels seems to be
of interest.

For a linear class of distributions and three critical wealth levels 0;,
Uz, and 03, the preference structure is shown in Figure 9. For each of the
critical wealth levels there is a bundle of pseudo indifference curves of
the kind shown in Figure 6. The parallel lower boundaries of these
bundles maintain their previous (cf. (7)) meaning: because there is an
upper bound on the standardized probability distribution, below these

' Criticizing the approach by A.D. Roy, TeLser (1955/56, pp. 2 f.) postulated a
saturation probability, after the achievement of which the mathematical expectation is to
be maximized. Baumol (1963) wanted to supplement the usual (4, o) approach for substi-
tutive indifference curves by weeding out those projects that do not ensure exceeding a
critical wealth level with a given minimum probability. NacHTeame (1969) developed the
hypothesis that the firm first wants to achieve a particular profit goal until its saturation
probability is reached, then a sales goal until a further saturation probability is reached,
and finally an expected-utility goal. A theoretical analysis of saturation probabilities is
given by EncarNacioN (1965) and NacHTRAMP (1969).



B The Lexicographic Criterion 67

direction
of
preference

Figure 9

boundaries the probability of exceeding the corresponding critical
wealth level is zero. (If the standardized distribution is not bounded
from above, the lower boundaries of the indifference-curve bunches
coincide with the ordinate.) The upper boundaries, however, gain a new
meaning. Each of these boundaries is the geometrical locus of all those
projects for which the probability of exceeding the corresponding criti-
cal wealth level just equals the saturation probability. Above such a
boundary, the probability of exceeding the critical wealth level exceeds
the saturation probability. Thus

(9) W(v=0){ =} WHuz0) e E{z}6i+kra(V), i=1,23,

if —k*is that variate of the standardized distribution Z for which

(10) _aj;‘fz{z;ﬂ, 1)dz=W*(v=0;).

If, as seems plausible, the critical wealth levels are inversely related to
their ranks, the areas labelled with Roman numerals are achieved, The
best project from a given opportunity set can then be found by the
following procedure. First the intersection with the field with the lowest
number has to be found. If the number is even then, from this inter-
section, the point(s) lying on the highest pseudo indifference curve must
be selected. If there is more than one such point the broken-line pseudo
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indifference curves are consulted for a choice between them. If the
number is odd, the choice is partly indeterminate since all projects
within the intersection have the property of satisfying the higher-
ranking aim with a probability higher than the saturation probability,
but, at the same time, of not satisfying the lower-ranking aim at all.

Through the introduction of saturation probabilities lexicographic
preference theory gained a high degree of flexibility. A large number of
choices from a given opportunity set can be modelled by a suitable selec-
tion of critical wealth levels and saturation probabilities ',

Nevertheless, the question of plausibility has to be asked. Why are
there saturation probabilities? They have little in common with the kind
of saturation associated with a full stomach. A possible, but not satis-
factory, answer is given by the phenomenon of thresholds. An aim that
is nearly reached with probability one by a number of projects is consi-
dered as practically certain and hence irrelevant for the choice between
these projects. But why should there be thresholds only in the neigh-
bourhood of one? Would it not be equally plausible to conjecture that
probabilities close to 0.7 are practicallv 0.7 and others close to 0.1
practically 0.1'*? It seems that thresholds can hardly be used to
legitimate saturation probabilities 4,

But even if there are other reasons which may account for saturation
probabilities, lexicographic ordering maintains the basic characteristic
of an absence of substitutability between the various aims. Why are
lower-ranking goals completely neglected if the higher-ranking aim is
not achieved with a satisfactory probability?

One argument cannot be denied: the operational advantages of lexico-
graphic orderings *. Even in its modified version with saturation proba-
bilities, the search procedure for an optimal decision seems to be simpler
with lexicographic preferences than with substitutive ones. For this

12 Flexibility, however, is of no value in itself. Cf. STIGLER’s approach to a ‘Theory of
Economic Theories’ in his review article (1950, pp. 114-119, esp. p. 115).

13 Cf. KRELLE's (1961, p. 611) attempt to quantify verbal probability judgements.

14 The uselessness of introducing thresholds into preference-theoretical analysis is well
demonstrated by observing how SCHNEEWEISS (1967b) and GEORGESCU-ROEGEN (1954, p.
522) who, concerning the question of substitutability have opposite opinions, lay the
blame for thresholds at each other’s feet. Schneeweill explains the existence of a lexico-
graphic ordering between two aims by the assumption that there is a threshold for the aim
with the lower rank that disguises a change in the degree of goal achievement. He is silent
about why there should not be a threshold for the other goal. A very similar argument is
presented by Georgescu-Roegen in order to explain the observation of substitutive choice.
A sign of the substitutability, he says, is that a person does not feel a disadvantage if the
degree of goal achievement rises for the goal withoui a threshold but falls for the other one
with a threshold. Here also, a legitimation for assuming only one threshold is missing.

I3 Cf. CHipmAN (1960, p. 222), HAUSSMANN (1968/69, p. 33), and NACHTKAMP (1969,
pp. 325 L.).
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reason the delegated preference orderings utilized in administration
hierarchies are typically lexicographic. The reader should, for example,
think of the sticklers for the rules that seem to be indispensable in
government administration. There are however reasons 10 suspect that
lexicographic orderings observable in reality are merely simplified
models of underlying substitutive orderings'®. Somebody has to write
the rule books and it may be worth his while to consult a substitutive
ordering. This suspicion is also supported by the obvious fact that in
administration the simplified lexicographic preference ordering is
frequently not considered to be sufficient. Why else does the institution
of limited competence exist? Whenever a decision problem on one level
of the hierarchy is outside the area of competence of a particular depart-
ment, it is passed up through the hierarchy until it becomes possible to
make a decision according to a more flexible, i.e., more substitutive,
preference ordering.

Anyone can see for himself that not only in administrative hierarchies
is it useful to decide with the aid of a simplified picture of the true prefe-
rence ordering. It would certainly involve too much effort to make a
federal case out of every little day-to-day decision. Possibly, but
certainly not necessarily, therefore, the simplified preference ordering
we consult in our daily decisions is lexicographic. But here also the
simplified ordering is not sufficient for extraordinary decisions; some-
times we have to think long and hard before coming to a decision.

Thus, for a theoretical analysis of decision fraught with grave conse-
quences, it seems wise not to deal with lexicographic preferences, but
rather to consider the underlying substitutive preference ordering itself.

Section C
The Expected-Utility Criterion

Two and a half centuries ago G. CRamer' (1728) and D. BeErNOULLI
(1738) developed an idea that, after its axiomatic foundation by von
NeuMany and MORGENSTERN (1947, pp. 17-29, 617-632), became the
most popular approach to formulating a preference functional for the
evaluation of probability distributions. The approach is to transform,

16 This does nol exclude the possibility that the usual assumption of a continuous sub-
stitutability of goals is itself an approximation of an ordering that in reality is discrete, as
is to be expected in the light of the threshold phenomenon. Cf. however NACHTKAMP
(1969, p. 325).

| Swiss mathematician (1704-1752). G. Cramer formulated his thoughts in a letter he
et 1o Nicolas Bernoulli, a cousin of Daniel Bernoulli. From there the letter went to D.B.
whao reproduced it in his article.
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with the aid of a suitably chosen monotonically increasing index
function U(.), the probability distribution of end-of-period wealth into
a probability distribution of index values and then to choose the
expected value of this index distribution to be the preference functional:

(1) R(V)=E[UV)].

If, as the Axiom of Ordering? requires, R(¥) is defined up to a mono-
tonically increasing transformation, then U(.) is determined up to a
positive linear transformation, that is, U{.) is measured by an interval
scale’. The reason is that for two random variables ¥ and ¥’ we have?

) Ela+bU(V){Z}E[a+bU(V")]
& E[JUMWMI{Z}ELUV)], b>0,

while & similar operation is impossible for arbitrary monotonic transfor-
mations of U{.).

1. The Approach of G. Cramer and D. Bernoulli

1.1. The Basic Idea

The expected-utility criterion is formally similar to the mean-value
criterion R(V) =E(V). Indeed, Cramer and Bernoulli developed it from
this criterion. In principle, they agreed that the preference functional
should be the mathematical expectation of a value quantity. However,
they argued that this value should be of a subjective rather than of an
objective nature’. Thus they employed the index function U{(.) in the
sense of a cardinal utility function for non-random wealth. A special
version of this function favored by Bernoulli (p. 35) is U(v) = In v, while
Cramer (pp. 58-60) assumed alternately U(v)= U@+3)=+y and
U(v) = min (y, y*), where y* is a saturation level of income. All three
functions are concave, the first two strictly (U"(v) <0), and thus exhibit

LCf.ech. 1A .

3 On the interval scale, equal utility steps can be determined. However, it is meaningless
to relate two levels of utility to one another as is possible in the case of ratio scales that are
defined up to the multiplication with a positive constant.

4 The second line follows from the first by subtracting ¢ and dividing through b.

* D, BERNOULLI (1738, §3); G. Cramer (1728, §19). LarLAce (1814, pp. XVI and
432-445) therefore uses the terms esperance physigue as opposed to esperance morale and
ALLals (1952, pp. 271 ff.) refers to the valeur monétaire and the valeur phycholozique.
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the plausible property of diminishing marginal utility which later
became popularly known as Gossen’s First Law.

The concavity has a particular significance for the evaluation of risk®.
As is well-known, the concepts ‘concavity’, ‘convexity’, and ‘linearity’
of a function are defined by comparing the function value associated
with a linear combination of values of its argument with the linear com-
bination of the corresponding function values. Thus, for a linear combi-
nation formed by applying the expectation operator to a given probabi-
lity distribution, the following relationship holds:

concavity
(3) linearity = E[U(V)]{s}UIE(V)].
convexity

From this it is easy to conclude that a decision maker with a concave
utility function should be willing to exchange a distribution of wealth
levels for a non-random level of wealth the size of the expected value of
the distribution. This interesting phenomenon can be elucidated even
further by looking for the lowest non-random level of wealth the
decision maker is willing to accept in exchange for the probability distri-
bution. This certainty equivalent’, S(V), is defined by

UIS(M]=L£[U(V)]
and, after applying the inverse function® U ~1(.), by
(4) S(V)=U"YHEWU(I}.

As mentioned above?, the difference between the expected value and the
certainty equivalent is called the subjective price of risk:

(5) n(V)=E(V)—S(V).
The subjective price of risk thus is that deduction from the expected

value the decision maker is just willing to pay to have the dispersion
completely eliminated. It is therefore suitable for distinguishing the

6 That concavity, but not other particular aspects of the utility function, is relevant for
risk aversion was perceived by MaRsHALL (1920, p. 693, note IX (appendix)).

T CF. the introduction to section A and ScHNEEWEISS (1967a, pp. 42-46).

B This operation requires that U - () is continuous at E[UV)].

2 (1, the end of the introduction Lo section A.
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various attitudes towards risk in accordance with the classification given
with reference to the two-parametric criteria !0:

risk aversion
(6) n(V){Z}0 & < risk neutrality
risk loving

With the application of the inverse function to relationship (3) it can
finally be stated ! that

concavity ,
(7) linearity = n(V){Z}0.
convexity

Thus, it is possible to derive from the hypothesis of diminishing
marginal utility, which is plausible in itself, the hypothesis that people
are willing to pay a price 7(V) for an elimination of risk. We now
proceed to confront this hypothesis with reality by studying three simple
examples.

1.2. Examples

The first example was of particular interest to Bernoulli, for Cramer
it was the reason for formulating the expected-utility criterion. It is the
determination of the maximum stake people are willing to put up in a
gamble. Despite our initial doubts concerning the compatibility of the
Supplement to the Axiom of Ordering with an evaluation of gambiles, it
is worth-while considering this example 12,

Both mathematicians tried to solve the so-called St. Petersburg
Paradox. This “paradox’ is that no one could be found who was willing
to risk his wealth, or even a considerable part of it, to participate in a
particular gamble, although the mathematical expectation of its out-
come was infinite. Whether the solution of Cramer and Bernoulli was
really appropriate to the problem will be discussed later in connection
with Arrow’s Utility Boundedness Theorem. Here, however, we shall be
content with finding out why the maximum stake (p,,,) may be smaller
than the expected prize.

10 Cf. equations (A 1) and (A 2). There is a complete coincidence if K;=E(V) or
Ki=E(Y). For the criteria of Lange, Shackle, Krelle, and Schneider it is only possible to
find a classification that is analogous but not identical.

Il Note that, with a linear utility function, the expected-utility criterion coincides with
the mean-value criterion.

2Cfch.1B1.
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The maximum stake is determined in a way that renders the decision
maker indifferent between playing the game, where he pays the stake
and receives the distribution of prizes X, and not playing at all. If,
because the game only lasts a short time, we neglect interest payments,
Pumax 18 implicitly determined by the equation

(8) Ula) = E[U(@+ X — pryay)]s

where @ is the level of wealth without participation in the game.
Applying the inverse function of U(.) and subtracting E(a+ X — Ppax)
we obtain

(9) ﬂ‘—f:{ﬁ' g s X"pmax}: =t [E(ﬂ+ X_pma}:}_ S{H + X_pmax}]
and, utilizing the definition (5), we have
(10) Pimax=E(X) — n(@ + X = Pray).

Because the concavity of the utility functions assumed by Cramer and
Bernoulli implies 7 >0, this equation shows that p,,,. <E(X).

The result may well explain why, for various oddly constructed
gambles, no one is willing to put up a stake the size of the expected
prize, but it does not describe the typical gambling situation. Unlike the
game described above, the typical situation is characterized by gamblers
who put up stakes higher than the expected prize; otherwise gambling
casinos would not exist. The typical behavior of gamblers can be made
compatible with the formal apparatus of expected-utility theory if a
convex utility function is assumed and the plausible hypothesis of
diminishing marginal utility is discarded. But this would not be the true
explanation of gamblers® behavior. This behavior is better explained by
the pleasure derived from aspects of gambling that cannot be seen
simply by using information about the probability distribution of
prizes '3,

The theory seems to fit the next two examples, taken from the
insurance business, much better. Unlike in the first example, the
problem of time now has to be taken into account. Without the passing
of time, no loss can occur. It is therefore assumed that a premium is
paid at the beginning of the period and that all indemnification pay-
ments are made at the end of the period. The initial wealth, net of the
premium received or paid, is invested in the capital market at a non-
random interest rate g — 1.

IVIEE ehs T B L3,
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We find first the minimum volume of premiums p,;, that an
insurance company would require for accepting the loss distribution C
of its total stock of underwritten contracts '*. If the company leaves the
business, it achieves an end-of-period capital stock of size v=agq. If it
stays in business, the end-of-period stock of capital is V=ag+pg—-C
where p is the premium revenue. Thus the minimum premium revenue is
determined by

(11) Ulaq) = E[U(ag + puing — C)l,
so that, analogously to (10), the result
“2} Pmind = E(C] + 'H{ﬂ'{]’ + Pmind — C}

obtains. The minimum premium revenue, augmented by interest, con-
sists of the expected loss E(X) and a risk loading n(.) that is positive in
the case of a concave utility function. The result corresponds closely to
the way insurance companies actually calculate.

What about the insurance purchaser? The question was asked by
BernourLr (1738, § 15'9), but it was not until a century later that
Barrois (1834, pp. 259-282, esp. pp. 260 f.) calculated the maximum
premium from the point of view of the purchaser'®!’. Without
insurance, the potential purchaser faces the random end-of-period
wealth V'=ag— C, where C now indicates the individual random level of
losses. If p denotes the individual premium paid, with insurance wealth
becomes ag — pg. Thus, the contract is attractive from the point of view
of the purchaser if E[U(ag— C)] < U(ag — pg); the maximum premium,
Prmaxs 15 therefore determined by the condition

(13) E[Ulag - O)] = U(aq — Pmaxq)
from which
(14) Praxd = aq — S{aq —C)

14 Cf. BUHLMANN (1968, p. 268) and HELTEN (1973, pp. 208 £.).

'S Bernoulli asked about the critical wealth level where the insurance purchaser is indif-
ferent between buying insurance and bearing the risk himself, This is a meaningful
question, since, as we shall see in ch. 111 A 2.3, U{v) =In v implies that risk aversion is a
decreasing function of wealth..

16 Independently of Barrois, the problem was taken up by Mossin (1968). Cf, also
SCHNEEWEISS (1967a, p. 45) and HeLTEN (1973, pp. 210 [.), and the remarks inch. V C of
this book.

1" The approach of Barrois, who utilizes the logarithmic utility function, is here slightly
generalized. Barrois's (p. 261) equation (3), incidentally, contains a mistake. The correct
version of this equation 15

A=F+A'S—(F SHAVFU- A",
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can be derived. If we now write
(15) Praxd = g — E(ag — C) + [E(ag — C) — S(ag — C)],
we get, because of (3),

(16) Pmaxq = E(C) + n(aqg —C).

This is the equation determining the maximum premium the insurance
company can demand from a customer. With a concave utility function,
therefore, the interest-augmented premium will exceed the expected
idemnification payment. From the viewpoint of the insurance company
this is a conditio sine qua non, since the expected indemnification pay-
ment for all underwritten contracts equals the sum of the single expecta-
tions just as the total premium income equals the sum of the single
premiums.

It is useful to consider the case of insurance demand by inspecting the
graph shown in Figure 10'%. The figure refers to the simple case of a
binary loss distribution with

w 1l—w
C= ;
( e )
where / and 0 are the variates of C, and w is the probability of loss.
Since E(V) is formed as a linear combination from ag and ag—/ with

Uiv)

E[U (V)]

0l Jag—¢ S1V) E(V) aq "
n(¥) E(C)
D d

Figure 10

1B Cf, D, Beanouir (1738, § 7) and, for example, SCHNEEWEISS (1967a, p. 62).
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the same weights as those used to form E[U(V)] from U(ag) and
Ulag — 1), the point with coordinates (E[U(V)], £E(V)) is situated on the
chord PP’. To find the value of S(V) given the value of E(V), from E(1)
move vertically to the chord, from the chord horizontally to the utility
curve, and from this curve back downwards to the abscissa. Obviously,
for the example in this figure, there is a positive subjective price of risk
and hence the maximum willingness to pay exceeds the expected indem-
nification payment. The reader may verify for himself the outcome of a
linear or even convex utility curve,

1.3. An Hlustrative Measure of Risk Aversion:
The Intensity of Insurance Demand

Barrois’s analvsis of insurance demand gives a very graphic example
of the possible applications of expected-utility theory. With reference to
this example, we want to define a standardized measure of risk aversion
that, in the course of this study, will be used a number of times for inter-
pretation purposes. It is called the intensity of insurance demand, g. The
intensity of insurance demand is the maximum interest-augmented
willingness to pay for a full-coverage insurance contract divided by the
expected level of loss':

Pmaxd e E(C)+ nlag — C}
E(C) E(C)

a7y  g=sglag-C)=

Because of (6), this measure satisfies the relationship

risk aversion
(18) gi{z}1 & < risk neutrality
risk loving

The intensity of insurance demand allows for a straightforward con-
frontation between the expected-utility approach and reality. Suppose
an insurance company insures 2 persons each of whom brings the same
loss distribution C and has the same maximum willingness to pay py.y.-
Then nE(C) is the expected value of total losses and, with independent
risks and n sufficiently large, it also approximates the company’s total
sum of indemnification payments. The maximum aggregate premium
volume is 1 py.«. Since the ratio between the actual sum of indemnifica-

1% This measure resembles FISHER's (1906, p. 76) coefficient of caution that refers to the
case of gambling and is the ratio of the maximum stake the decision maker is willing to put
up and the expected prize. In the case of risk aversion the coefficient of caution has a value
< 1, in the case of risk neutrality a value =1, and in the case of risk loving a value > |,
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tion payments and the actual total premium income is the loss quota,
the inverse of the intensity of insurance demand 1/g = [nE(C))/[nq Pryax)
may be therefore interpreted as the minimum of the discounted loss
guota. In general, empirical loss quotas significantly fall short of
unity?® and thus support the hypothesis g>1, which can be derived
from the law of diminishing marginal utility by the use of the expected-
utility theory.

This result puts the theory of Cramer and Bernoulli in a very favor-
able light. Nevertheless, it must defend itself against at least two objec-
tions, that have been raised in the course of scientific discussion. We
shall see how successful it is in doing this.

1.4. The Problem of Cardinal Utility

It may well be doubted whether the cardinally measurable utility
postulated by Cramer and Bernoulli exists at all. According to PArETO
(1906, p. 169 f.), the assumption of cardinality belongs to metaphysics.
The only thing certain, he said, is the fact that individuals are able to
identify classes of equivalent commodity bundles and order these classes
according to their desirability, i.e., that individuals have an ordinal
utility function of income or wealth. This view, which incidentally had
been clearly put forward by WunpT (1863, esp. p. 26) for the psychology
of stimulus sensations, became dominant among professional econo-
mists, particularly after the ‘reconsideration’ by Hicks and ALLEN
(1934).

The reason is not that this view can be supported by clear-cut argu-
ments, but that the theory of consumer choice, originally built on cardi-
nal utility, could stand up to such a relaxation of assumptions="+2, It is
true that there are critics like LitTLE (1950, pp. 14-52) who particularly
dislike the indifference assumption and so prefer an even more general
approach®. On the other hand, there are critics like FriscH (1932),
Scuurtz (1933), At (1936), Avtais (1952, pp. 271, 273 1.), SCHNEEWEISS
(1963), KreLLE (1968, pp. 10-12), and van Praac (1968, esp. pp. 6-10)

W Cf., for example, BUNDESALFSICHTSAMT FUOR DAS VERSICHERUNGSWESEN (1974, pp. 26
ff. (appendix)).

21 With respect to the cardinal utility Tunetions or sensation functions postulated in
psychophysics (ef. ch. II1 A) this point of view was also expressed by M. WEBER (1908,
esp. pp. 389-392).

2! The utilitarian welfare theory, however, did not survive this relaxation. Its
recommendation that, in order to reach a welfare maximum, all income should be
equalized, was based on the assumption of cardinal utility where even the unit is known.
This probably did not bother the *Fascist and critic of socialism and democracy’, as
Pareto was called by Amoroso {1938).

D Cf. fn. Sinch. 1 A
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who find the approach too general. They all* plead for an interval scale
of utility as required by the expected-utility rule. Indeed such a weakly
cardinal function is not at all metaphysical. If individuals, as Pareto
assumes, are able to draw their indifference curves, then they are
revealing ratios of marginal utilities of different commodities. Why,
then, should they not also be able to indicate the ratios of changes in
utility from successive changes in the guantity of a single commodity or
commodity bundle®*? If they are, cardinality is ensured.

They are indeed able to do so, and can even do much more. That, at
any rate, is the result of hundreds of series of experiments carried out by
S.S. Stevens and co-workers at the Harvard Laboratory of Psycho-
physics?®. According to these series of experiments, man can associate
stimuli and sensations closely enough to construct even ratio scales.

Moreover, if this criticism were the only one raised against the
expected-utility criterion, the cardinality of the utility function could be
even more simply legitimated. Provided the preference functional is of
the form (1) then, as shown by (2), the utility function must be
measurable by an interval scale, as long as people can evaluate probabi-
lity distributions in an ordinal way, as would be suggested by an analo-
gous application of Pareto’s postulates. Thus the cardinality of the
utility function in itself cannot be subjected to significant criticism.

1.5. Specific Risk Preference

The weak point of the expected-utility rule lies elsewhere. Even if
there is a cardinal utility function for non-random levels of wealth,
there is no obvious reason for risk to be evaluated by using this
function. This was vigorously pointed out by Atiais (1952 and 1953)*.
Although two people have the same utility function for non-random
wealth, they may well differ with regard to their plaisir du risque®™.
According to Allais, the expected-utility rule should therefore be correc-
ted by introducing some measure of the dispersion of utilities. Unfortu-
nately, Allais is not very specific about this*’. Probably KreLLE"s (1968,
pp. 148-163) axiom system B, that explicitly refers to a parameter

24 Al does not want to be labelled as a protagonist of cardinality, but his axioms never-
theless lend strong support for it.

25 Cf. KreLLE (1961, p. 140).

26 A detailed overview is given in S.5. STEVENs (1975). Cf. also ch. 11 A of this book.

27 Cf. also ScHNEEWEISS (1967a, p. 70), KreLLE (1968, p. 174), and HELTEN (1973, p.
197).

26 Arvas (1952, pp. 130 f.); in contrast to the plaisir du jeu, the pure pleasure in
participating in the game procedure.

2% In one place, however, he mentions the second moment: AvLLals (1953, p. 513).
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measuring the dispersion of utilities, approaches what Allais had in
mind. More elegant and, in content, not very different® is the way that
Krelle (pp. 138-147) suggests with his axiom system A. There, U(V) is
split into a risk-preference function ¢(.) and a utility function u(.) for
non-random wealth such that

(19) U(v) = @ [u(v)].

In a similar way as was shown above for U(.), concavity, linearity, and
convexity of ¢(.) indicate a love of, indifference to, and aversion to
dispersions in utility.

The intermediate case of linearity Krelle calls the ‘normal’ case.
Since, when ¢(.) is linear, the concavity of u(.) is sufficient to produce
risk aversion, the choice of this name suggests a good deal of relevance
for the expected-utility theory. But unless hypotheses are available to
legitimate the assertion that the behavior defined as ‘normal’ is normal
from an empirical point of view, (19) leads to an elimination of the
expected-utility theory in the form used by Cramer and Bernoulli. The
derivation of risk aversion from the hypothesis of diminishing marginal
utility that at first glance seemed so plausible, loses much of its force.

This is a pity, particularly since up to now no other explanation of
risk aversion has been offered. We therefore have no choice but to
accept risk aversion as an empirically observable fact and to forgo its
explanation. What remains from the proposal of Cramer and Bernoulli
is the idea as such that the preference functional should be the expected
value of an index function U(.) however it is constructed and whatever
its meaning is. 4 priori, this idea does not seem very reasonable. A
legitimation similar to the one that could be given for the two-
parametric criteria in the case of linear distribution classes is impossible.
There is, however, an argument that throws a whole new light on the
preference functional E[U(V)] that over the years had become rather
dusty. This argument is considered in the following section.

2. The von Neumann-Morgenstern Index

Beginning with an approach different from that of Cramer and
Bernoulli, von NEuMANN and MoRGENSTERN (1947) also developed a kind
of expected-utility rule. However, the utility they consider has little in
common with utility as a measure of the intensity of satisfaction, and it
could be argued therefore that another word should be used. However,

W Cf, KreLLe (1968, pp. 161-163).
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it is common usage to denote the von Neumann-Morgenstern index by
the term expected utility, so the name will also be used here.

2.1. The Axioms

The special characteristic of the von Neumann-Morgenstern
approach is to derive the preference functional R(V)=E[U(V)] from a
few axioms postulating rational behavior3!, The presentation of axioms
is always largely a matter of taste. Thus it is not surprising that the
axioms originally presented by von Neumann and Morgenstern, in the
course of time, underwent considerable alteration.

The decisive step was made at the beginning of the fifties, with the
introduction of the Axiom of Independence which, as we saw, also plays
the crucial role in the foundation of the Principle of Insufficient
Reason. It was such a big step that even Samureison (1952a, p. 147) did
not understand the relationship with the original axioms: ‘Quelgue
mathématicien devrait éclairer tout cela.” The mathematician was soon
found. It was MaLinvaup (1952),

A simple axiom system that leads to the expected-utility rule is
obtained as soon as two further axioms are added to the two introduced
in chapter one. These are the Archimedes Axiom and the Axiom of
Non-Saturation®?, For the sake of clarity, the complete axiom system is
presented herc. Deviating from the original formulation, we assume
equivalent objective probabilities for the first two axioms, thus taking
into account the result of the first chapter.

(1) Axiom of Ordering: The decision maker has a complete weak orde-
ring of all attainable probability distributions of end-of-period
wealth.

(2) Axiom of Independence: Suppose for two probability distribution e,
and e, it holds that

E]{i}‘?}

Then it follows that distributions, built up by combining e, and e,
with another distribution ey, satisfy

(A (S 0

31 Von NEuMann and MORGENSTERN (1947, pp. 26-29, 617-632).

X Cf.ch. TA1, 1B 1,and 1B 3.1.2. A discussion of various axiom sysiems can be
found in MagrkowiTz (1970, pp. 228-242) and KreLLE (1968, pp. 121-195). Qur axiom
system resemnbles that presented by FriEDMaN and Savace (1952, pp. 464-469).

if0<w=l1.
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(3) Archimedes Axiom: Let there be three variates of wealth vy <v<u;.
Then there is one and only one probability w, 0 <w <1, such that

(w I—w)

v~ :

o] ol

(4) Axiom of Non-Saturation: If v3>uvy, then vy > vy.

We forgo a discussion of axioms (1) and (2) since they are known
already. The most important aspect of the Archimedes Axiom™ is the
exclusion of lexicographically ordered ranges of wealth, an aspect that
provoked vigorous criticism by GEORGESCU-ROEGEN (1954, esp. p. 525).
If, for example, there is a lexicographic critical level of wealth 0,
v, <0 <uvs, then for each probability in the range 0< w<1 we have

(20) u{";}(:’2 I;w)huﬁ}ﬂ.

Thus there is no probability in the open unit interval that is able to
produce the indifference required by the Archimedes Axiom. In the
light of the doubts concerning the validity of the lexicographic criterion
remaining after the discussion in section B, we should not place too
much weight on this criticism in the case of careful economic decision
making. If, however, despite these doubts, there is a lexicographic criti-
cal level of wealth, then the axioms given above have to be restricted to
probability distributions that do not extend beyond this level of wealth.
The remaining Axiom of Non-Saturation is, at least for wealth levels
occurring in the real world, self-evident. If it were not true, then people
would not mind being robbed.

2.2. The Derivation of the Expected-Ultility Rule from the Axioms

It is now shown that the four axioms introduced above imply the
expected-utility rule.

1 Reference is often made to this axiom under the name of ‘Continuity Axiom” that
was first used by MArscHAk (1950, p. 117). If we consider the indifference probability w
as a function of the type A(u) then this name suggests that hiv) has to be continuous, This,
however, is unnecessary, For example, the function

0.1if v<p*
flvy=+ 0.5if v=u*
0.9 if v>u®*

is not continuous although, for any v, it gives a unique h(.) as required by the Archimedes
Axiom.
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Step 1: Assessment of the Indifference Probability

First we define two wealth levels v, and v, that are chosen
generously enough to ensure that all distributions to be evaluated fall
into the open interval they limit. Then, by the use of the Archimedes
Axiom, an indifference probability A(v) is assessed for all v in this inter-
val. Analogously to the formulation of the axiom, A(v) is implicitly
defined by

21 Y (h{u} ] —h{u))

Uinax Umin

or, in other words, by

22) (h{u} I—h{u))*(h{u] l—h{u)).

b u Uinax Uinin

Figure 11 shows an example of the shape of the function #(v). Note that

R P b M

This relationship originates from the fact that, according to axiom (4),
we have

YUmax = Umin = Umax ” Umin

and that, because of axiom (2), in the case v = v, and A(v) <1 the right
side of (22) would be worse and in the case v=u,,, and A(v) >0 better
than the left side. We leave it open for a moment whether or not A(v) is
monotonically increasing.

L L R

=
T P ————

lllﬂ:th

Figure 11



C The Expected-Ulility Criterion 83

Step 2: Transformation of Chances
Consider one of the probability distributions to be evaluated,

(24) (

W wz...w,,)
L ...y

and express it in the form

w l-w Wy I—w
W w
{25) e 2 e L
1 —w 1 —wy
€ e, U () R |

in order to achieve the formulation of the Independence Axiom. Then,
by the use of this axiom, the degenerated subdistribution e;=u is
replaced by the binary distribution

(h{uu} 1 - h{th))

Urnax Pmin

(26) e, =

that is equivalent according to step 1. Thereby the probability distribu-
tion (24) takes on the shape

Wy Wy ... W,
(27) (fl{lh} 1 —A(v, ))
U300y

Umax Umin

Maintaining this transformation we now, in an analogous way, replace
Uy, Uy, ..., U, Step by step by equivalent binary distributions similar to
(26). Thus, the probability distribution finally becomes

Wy

' (h{'-"nj ]~ h(“ﬁ))

Umax Umin

W e
(8) (o) 1)

VUmax Yrin
X w;h(v;) _El w;[l — h(v;)]
i=1 =

Umax Ummin

The procedure can easily be illustrated if the graph of the initial
probability distribution (24) is added to the diagram of Figure 11. For
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example, for a distribution with three variates Figure 12 is obtained.
The columns over vy, vs, and vy, depicted in this figure, represent the
corresponding probabilities w;, w,, and w;. FEach of these columns is
divided in the same proportion as the curve A(v) divides the distance
between the upper and the lower bound of the figure for the correspon-
ding level of v. Step by step, the lower parts of these columns are shifted
to the wealth level v, and the upper ones to v,;,. In this way, a binary
distribution, as represented by the columns over vg., and vy, is
constructed that is equivalent to the initial distribution.

| e

hiv),w;

I“"i h {l‘j]

4 /
Zw;[1—=hiv;)] \

()

U

min
1 hlu,)w, 3 hivy)w, 5 h(vs)w,
2 [1=h(r)]w, 4 [1—h(v;)]w, i [I—Jle[u_j,]]-.au3

Figure 12

In the way just described all probability distributions from the
decision maker’s opportunity set can be transformed into equivalent
binary distributions with the variates vy, and vy;,. It seems wise to
choose that distribution for which the probability

;-Z:- w;h(v;)

of the occurrence of the variate vy, 1s maximal. But it has not yet been
proved that this choice follows from the axioms introduced above.

Step 3: The Comparison of Binary Distributions
Suppose there are two distributions

(29) EE(W ]_w)ande’E(w l—w),
Umax  Ymin Umax  Ymin

where w’'>w,
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to be compared. Defining the probability

(30) W' =

we can write the two distributions in the form

w” l—w”
(31) e= w o ol-—w w ol—-w
<”nmx Umin ) (Umax Umin )
and
w” 1—w" i

e'= (w' l—w)
Umnax Umax  Ymin

By direct application of the Independence Axiom (2) the following
relationships are obtained:

w 1- w) 2
{ ?} Umax
Uimax Vinin

O B Y W 1 —w
Umax  Unin Umax  Umax

< Umin { ;} Umax -

(32) E{%}e’w(

According to this formulation e’ is better than e if, and only if, the non-
random wealth level v,,,, is preferred to the smaller, also non-random,
wealth level v,,;,. As required by the Axiom of Non-Saturation this is
the case.

Result

Thus it has been shown that, from any pair of distributions, the one
with the higher value of ¥ 7_, w;h(v;) is to be preferred. The preference
functional therefore is

@) RO = L wihv)
— E[U(V)]

where the ‘indifference function’ h(v) turns out to be the utility function
Ulv).
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The result in turn allows the initial question of whether h{(v) = U(v) 1s
monotonically increasing to be answered. The answer is in the affirma-
tive. Suppose that, on the contrary, for two non-random levels of
wealth v and v” we have v’'> v and because of U(v’)< U(v) at the same
time v’ < u. Then, obviously, there is a contradiction with the Axiom of

Non-Saturation.

Section D
Comparison of Preference Functionals

1. Expected Ultility versus Lexicographic Preference:
The Decision for a Decision Criterion

Thanks to its axiomatic foundation, the expected-utility criterion
plays a dominant role among the decision criteria discussed. Following
ScHNEEWEISS (1967a, p. 78) it could therefore be called a ‘quasi-logical
principle’. This sounds favorable, perhaps a bit too favorable, because
from the lexicographic side the question is asked': ‘Is it though the
greatest of all irrationalities to assume that any given individual, be he a
cardinalist, is ex definitione rational in the above sense?’

On the other hand, the alternative of a preference structure based on
aspiration levels and saturation probabilities offered by lexicographic
theory is not very convincing. As long as this preference structure is
interpreted as being derived from an underlying substitutive ordering
for the sake of simplifying short-run decision making it certainly has its
merits. But as a guide for weighty economic decisions it is not accep-
table. Nevertheless, the lexicographic theory in its simplest version with
a critical wealth level below which there is the absolute disaster, cannot
be altogether rejected. Such a level which, if it exists at all, was shown to
be at v=0 would of course have some bearing on careful decision
making.

Thus, since the level of disaster is incompatible with the Archimedes
Axiom, Schneeweil}’s pink champagne seems to acquire an aftertaste of
bitters. Fortunately Arrow (1951, p. 29) and Roy (1952, pp. 432 [.) save
the situation. If the utility function has the shape (cf. Fig. 13)

1, v=0
(1) Ulv) = {0, HE},

! GeorGESCU-ROEGEN (1954, p. 505).
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then a maximization of expected utility is identical with a maximization
of the probability of survival, for in the present case

) R(V)=E[U)] = | UG)/w)dv

= _jmf{t;]du

= W(v=0).

The surprising result, therefore, is that the expected-utility criterion is
compatible with the aim of maximizing the probability of survival. The
only aspect that may be disturbing is that the utility function described
by (1) contradicts the Axiom of Non-Saturation and the Archimedes
Axiom.

1 ¥ EmgE————
e e
U (v) ey
§ e
= lﬂﬂIﬁ
e
ﬂ E ——
I""r!“rp 11 I":.l'l‘li'li
Figure 13

The contradiction, however, arises only from mathematical sophisti-
cation and has no real meaning. Consider the curve a in Figure 13 that
shows the utility function U(v) where the left part is valid for v<i and
the right part for v=0. Because of

O<U(L) <] & Upin <U< Upmax

and the strictly positive slope, this curve is compatible with the axioms
of expected utility?. The corresponding preference functional can -be
written as’

(3) R(V)=E[U(V)]
= W< D E[U(V)] ||.r{fr+ Wv=0E[U(V)] | b= g+

I CF, fn. 33 in section C.
Y ELX) |  means: ‘expected value of X conditional on the event ¥,
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Now suppose, by a suitable transformation of U(v), curve a is shifted,
via position b, towards the thick curve that coincides with the lower
boundary of Figure 13 for v< ¢ and with the upper one for v> . Then
E[U(V)] | ,5—0, since U(v)—0 for v<d, and E[U(V)]|,=;—1, since
U(v)=1 for v=0. Accordingly, in the limit, we have for (3):

@) R(V)~ W(v= D).

Thus the lexicographic aim of maximizing the probability of survival
can be approximated as closely as we wish by a shape of U(v) that
satisfies the Archimedes Axiom and the Axiom of Non-Saturation.

These considerations show up another feat of the expected-utility
approach. We have seen that, by a suitable choice of U(v), it is possible
to depict the lexicographical aim of survival. The question remains,
however, how to discriminate between two distributions with equal
probability of survival. The lexicographic approach decides this ques-
tion by referring us to an additional, lower-ranking, aim. If attention is
limited to pecuniary problems this aim could, for example, be the maxi-
mization of expected utility of wealth by the use of a given continuous
utility function U(v). At first glance the expected-utility approach as we
have come to know it seems unable to handle such a two-dimensional
aim. Searching for a suitable shape of the utility function U(v), the first
idea that occurs is either to choosc U(v) = U(v), so that only the lower-
ranking aim is taken into account, or to choose

1, b=
U = U* —
(U} I:U} {u‘ U‘Eﬁ} ¥
so that, according to (1), only the predominant aim is depicted. There is,
however, also the possibility

AU, v<d

1—-A[1 - Uv)], uaﬁ}’ psAsl,

(3) U)= [

where the function U(v) is assumed to be standardized so that U(v,,,) =0
and U(bpg,) = 1. It can be shown that, with the aid of the function U(v)
described in (5), it is possible to approximate as closely as we wish the
two-dimensional ordering with the predominant aim max W(v=0) and
the lower-ranking aim max E[U(V)], if 4 is chosen sufficiently close to
Zero.

Concerning the predominant aim, this contention is proved by (4),
since, figuratively speaking, U(v) is constructed from {(v) by cutting
the latter in two at v= ¥ and, with A—0, shifting the left part towards
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the lower and the right part towards the upper boundary in Figure 13.
The shape of U(v) does not matter for this result.

Suppose now that the predominant aim does not allow a discrimina-
tion to be made between the two distributions V" and V" since they are
both characterized by the same survival probability. In this case the
lower-ranking aim would have to determine choice. The function U(v)
would have to represent U(v) so that, in the case W(v'=0)= W(v"=10),
the relationship

(6) E[U(V{Z}EUV)] « E[UV)H{ZIE[O(V)]
will hold, either exactly for arbitrary values of 4 or, at least approxi-
mately, for sufficiently small values of A. The former is the case. This
can easily be shown by the following chain of identical transformations:
(7) E[UWVN{Z}EIUWI™)]
& W' <DE[UWV)] | y<cs+ W'2DE[UWV)] | y2o

{2} W"<DE[UV")] | et WO"ZDEIUWV ) | 2o

= W{Ur‘: [DE[AS{ VF)} | <o T W{U’E E}E[l = ‘1“ =5 ﬂ{ V‘}” IIJIE*_'
{?} W{U"'ﬂiﬁ)ﬂ'[l[?(v’}] u*-::l?+ W[U".EQ}E[I _A“ — {:F{ Vﬂ)]] |u’£l’l

b W(Ur‘:ﬁ}E[ﬂr{V;]] Iu"-:fﬁ"" W(H’E IT}E[G{ V’]] i =0
{Z} W <DELTV)] | yrest W' ZDE[OV)] | =g

@  E[OWVIHZIEIUI).

Thus it has been shown that, by a suitable choice of A, the two-part
utility function U(v) as defined in (5) can be made to approximate the
two-dimensional lexicographic preference structure as closely as we
wish®.

It is important to recognize that, with A—0, the two-part utility
function is able to incorporate the predominant and the lower-ranking
aim at the same time. For arbitrary A>0, and thus during the whale
transition process towards the limit A=0, the separated curve U(v)
ranks the two distributions ¥” and V" in the same way as the original
function U(v) does, provided the distributions do not differ with respect
to their probabilities of survival. For A—0 the function U(v), however,

4 The aim could be generalized by taking the maximization of a weighted average of
conditional expected utilities as the lower-ranking aim:

max EEIE[U{V}] | u-::r'l"'“ = Q}E[U(V}] | r:EﬁIH




90 Rational Behavior under Risk 11

has the additional property of leading to a better evaluation of the
distribution with the higher survival probability irrespective of how U(v)
and the two probability distributions are shaped.

From a normative point of view, the lexicographic objection to the
Archimedes Axiom was the only substantial criticism that survived the
scientific discussion of the von Neumann-Morgenstern index. With the
preceding demonstration of the flexibility of this index, this criticism
also loses much of its force. We thus should accept the expected-utility
criterion as a guide to wise action.

We could finish chapter two at this point and continue with the
expected-utility criterion. Unfortunately, there is another aspect that
has not yet been considered; it is how easy the preference functionals are
to handle in theoretical and practical analysis. With regard to this
aspect, the expected-utility criterion seems to be among the worst of the
criteria considered. Its very flexibility makes it difficult to use.

For this reason, the question of whether the expected-utility approach
is compatible with the various two-parametric approaches arises.
Perhaps a sufficient compatibility is somewhere to be found that will
allow us to choose a simpler decision criterion if we need one.

2. Expected Utility and the Two-Parametric Substitutive Criteria:
Searching for an Operational Alternative

2.1. Common Preference Structures

This section compares the expected-utility criterion with some of the
two-parametric substitutive criteria and attempls to answer a rigorous
question®. Suppose no limitation of the classes of probability distribu-
tions in the decision maker's opportunity set is possible. Are there
preference structures such that arbitrarily chosen probability distri-
butions are ranked by the two-parametric criterion in the same order as
by the expected-utility criterion? Or shorter; Which intersection of
preference structures do the criteria have in common?

The search is hopeless with the criteria of Lange and Shackle, for they
both neglect much of the information contained in a probability distri-
bution. Thus, right from the beginning, we need only consider the other
criteria®.

° Cf. SCHNEEWEISS (19672, pp. 89-117, ch. [11) and MARKGWITZ {1970, pp. 287-294).
& ScHNEEWEISS (1967a, pp. 103-111) shows that preference structures the depend on
ordinal parameters are incompatible with R(V)= E[U(V)].
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2.1.1. The Domar-Musgrave Criterion
RON=VIEY), — § yf0r+a)dy)
The Domar-Musgrave criterion that can be written as

R(V)=U(K,,K,) with K, =W(y=0E(Y)— W(y<0)E(Y)
and K,=W(y<0)E(Y)

implies, as shown by RicHTER (1959/60, pp. 155-157), a utility curve

that is composed of two lincar parts:

x}r',a'}ﬂ

U ) U{m% .
—fY, o<y

O<a<f

0 a v

Fipure 14

The reason is that dispersions of gains and losses around the given mean

values E(Y) and E( f’] must not influence the value of the preference
functional, a requirement that holds only with linear utility. The prefe-
rence functional can therefore be simplified to

(8) R(V)=E[U(V)] = W(y=0)aE(Y)— W(y<0)BE(Y)
=aK,—(f—-a)K,,

where @ and ff are some positive constants. As a first approximation, the
shape of the utility function depicted in Figure 14 is not implausible.
The concavity still ensures risk aversion. Less attractive is the impli-
cation that, as shown in Figure 15, the corresponding indifference
curves in the (K, K,) diagram are linear:

K, _p-a
©) ng_ 7 i

= const.

For problems of taxation in particular, for which Domar and Musgrave
constructed their preference functional, this aspect is fatal. The substi-
tution effects resulting from taxation fail to occur.
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K,=E(Y) /

,_WH-.-::EI)L{H
Figure 15

2.1.2. The Criterion of Krelle and Schneider
R(V)=UQp*%y")

The Krelle-Schneider criterion is general enough to include all kinds
of preference structures. Indeed, it is the decision maker himself who
constructs the equivalent gains and losses. With respect to its handling,
however, in its general form this criterion is no better than the expected-
utility criterion.

Nevertheless, Schneider succeeds in applying his criterion to the
analysis of tax effects by introducing a supplementary assumption. This
assumption is that an income tax at the rate 1 with no loss offset reduces
the equivalent net gains to 1 —f times the equivalent gross gains for all
projects in the opportunity set. An analogous assumption is made con-
cerning the relationship between equivalent net and gross losses when
government bears the share z of the losses. An examination will be made
of whether there are von Neumann-Morgenstern utility functions com-
patible with this operationalized version of the Krelle-Schneider
criterion.

For this purpose the shape of the utility function above the gain axis is
denoted by U(y ) and above the loss axis by U(¥) so that

(10) U@)=U() and J=y, if y=0,
and
Up)=—-U(y) and y=-y, if y=0,

where y is the period income. We assume that U(y) is continuous at y =0
50 that U(ﬂ) U(0). If this assumption were not satisfied the notion of
the nullchance would not make sense. Since the utility function U(.) is
only defined up to a strictly positive linear transformation, we may
arbitrarily set

(11) U(0) = U(0) = U(0) =
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Now consider Schneider’s transformation procedure, given a particu-

lar distribution Y that is to be evaluated. According to the expected-

utility rule it holds that

(12) Uy %,y *)= W(y=0)E[U(Y)] - W(y<O)E[U(Y)].

If W(y=0)>w, then, installing the nullchance, we have’

(13) U % 3 *)=w U *) + [W(y=0)— W] U(0)
~ W(y<0)E[U(Y)]

and, after transferring the excess probability W(y=0)- w to the loss
axis,

(14) UG£y N =wUG*-wUG ).

If, however, W(y<0)>w, we first have

(15) UG % 5 *) = Wy=0)E[U(Y)] + [W(y <0) - w] U(0)
—W E.I'U. *)

and then again (14). By using (11) and setting (14) equal Lo (15), or (12)
equal to (13), we now find

(16) WU *) = W(y=0)E[U(Y)]

and hence the following equation for the equivalent gain:
(17) Jr=U-" u—ﬂ’{yaﬂ}ﬂ{ﬂ'{?}]}
Analogously we get

a9 -0 [Lwo<oEw V)|

from (13) and (14) or from (12) and (15).

T The first step of the transformation procedure, i.e., the replacement of the distri-
butions of gains and losses by their certainty equivalents, is not of interest in the present
context. For the definitions of #*, ¥* W, and w cf. section A 5.2.
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Schneider contends that

(19) U—0)p*r=0"" u—wu:_-mﬂu?u] —rJffu},

(1-9)y*=U"" &W(y{ms[fffu —z;i’n}.

According to a theorem of Aczer (1966, pp. 151-153)%, the only shapes
the utility functions U(y) and U(y) may then obtain are

(20) U)=aj?; a>0, y>0;
and
(21) U(y)=pBy? B>0, 6>0;

if we take account of (11) and the monotonicity of U(.). With the aid of
these functions, equation (14) can be specified as

(22) Ug*ys)=way*—wpy*.

Setting E[U(V)] = U(y * y *)=c=const., we can even derive from this
equation the explicit functional form of the indifference curves in a
¥y *— y*diagram:

23) Fo={ainpopn, o=t 5 Wy
wa W

As an example, Figure 16 illustrates the indifference curve system for

p* Lo
______,.r"'
—

*
¥

Figure 16

& Cf.ch. IIT A 2.1,
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6>yp=1. It shows that the indifference curves are convex, a plausible
property that is indispensable for Schneider’s analysis of taxation.

To achieve more general information on the guestion of convexity.
the curvature of the indifference curves should be calculated explicitly.
From (22) we get”

(24) dyx _ —UiUp+2U, U, Uy - U3y,
dy*2 | vy Uy

_ —Ovapp ¥ P —whAS— Dy ** 21— (—whdy ** 'V way(y— Dy ** ]
[woryy? 1P '

Since we are only interested in the sign of this expression some simpli-
fications are possible, and thus we find

(23) dy*

3 45 + - >
dj’ %2 UG*,}*]{*T}OH' wa’}'({s— i)y Y _ wﬂg{},_ 1y *5{{ }U.

The implications of this expression are summarized in the following
table.

The Curvature of Indifference Curves d*y */dy ** | ,

?~
d <] =1 >1
<1 () 20 <0 <0
=1 2y = = <0
>1 (3) >0 @ >0 5) 20

If the indifference curves are to be convex, then only the parameter
constellations (1) through (5) are relevant, where however cases (1) and
(5) are not completely satisfactory since they vield partly convex and
partly concave shapes of the indifference curves in the y *— y * diagram.

The following five sketches illustrate the implications of the admis-
sible parameter constellations with reference to the utility-of-wealth
function U(v):

Yl fn. 4 in section A,
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It is worth noting that the utility curve either has an infinite slope or a
slope of zero if v—a (i.e., y—0). This aspect produces some implausible
kinks and implies that al// admissible curves are characterized by convex
segments that indicate risk preference. Perhaps the most plausible shape
is the fifth. It roughly fits a curve proposed by Markowirz (1952b). This
curve is convex for small positive changes in wealth to allow for an
explanation of gambling and is concave for negative changes in wealth
to depict the preference for insurance. Even apart from the problem
that we cannot accept the expected-utility argument for gambling'?, the
curve (5) must be rejected, however, since at v = a it is characterized by a
slope of zero, a property that 1s not in line with the Non-Saturation
Axiom,

L (v) i) Uv) Ulr) Ulel
(1) (2) (3) T M

Figure 17

2.1.3. The (i, @) Criterion
R(V)=U[E(V),a(V)]

As shown by RicuTER (1959/60, p. 153)"! the (4, o) criterion coincides
with the expected-utility criterion if the utility function is a polynomial
of second degree'?,

(26) U)=v—av?.
Applying the expectation operator to this expression we have
27) E[U(V)] = E(V) — aE(V?).

10 Cf. ch. ITT B 1.3.
11 Cf. also BorcH (1962, 1968b, and 1969),
12 This simple version may, for example, be obtained from

Uiy =a)+aw+aw? or Ulw)=(v—a)— av—)?

by linear transformations.
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Because of 1 @2(V) = E(V2) — EX(V) this implies

(28) E[U(V)]=FE(V) - aEX(V)—ad?(V).

Figure 18 shows the corresponding utility and indifference curves in a
(1, o) diagram. The fact that the utility curve has a maximum ¥ is as

implausible as the fact that the indifference curves are concentric circles.
The shape of the utility curve follows directly from (26), while the

U (o) 0 (V)

B,
E(V)
A—l E
o = A
2o | B (V
A =a(V) =
]
=0 o) (_1) _E[U)
2a o

Figure 18

13
a(V)=E{[V-E(V)?}
=E[V2-2VE(V)+ EYV)]
— E(VY)=2E(V)E(V) + EXV)
—E(VY—EYV)

14 The proof that this preference functional is in fact the only one compatible with baoth
the expected-utility criterion and the (i, o) criterion is given by MARKOWITZ (1970, pp. 286
ff.) and ScHNEEWEISS (19674, pp. 113-117). BorcH (1968b) even shows that the preference
functional under consideration is the only one compatible with both the (u, o) crirerion
and the Axiom of Independence.

15 For this reason SCHNEEWEISS (1968a) succeeds in demonstrating the incompatibility
between the (u, @) criterion and the principle of stochastic dominance. (A random variable
¥, with density function fi(.) is said to dominate the random variable V3 with density
function f5(.) if

l.l"
[ vfilndu= [ wfav)de ¥o*, —ee<u®< +om,

—

and if this expression holds with strict inequality for at least one v*.)



98 Rational Behavior under Risk 11

shape of the indifference curves can be found by dividing (28) by — &
and adding [1/(2a)]%:

2
(29) (i)z = E[—U;@ =a*(V)+ [EZ{ V) —2E( V}zla + (i) ]

2a 2a

2
=ag¥(V)+ F_-E{ V}] .
2a

On an indifference curve the left side of this expression is constant.
Thus, according to Pythagoras® Theorem, the indifference curves are
circles centered on a point with the coordinates (¢ =0, E(V)=1/(2a))'e.

This implausible description of a preference structure can onl v act as
a deterrant to using the (u, o) criterion. A negative marginal utility is
certainly unrealistic for it implies that rich people throw their money
away. This aspect becomes less important if the distributions to be
evaluated are such that the probability of exceeding the maximum of the
utility function is zero or at least very small, In this case, only the
‘plausible’ range of the indifference curves where dE(V)/da(V) | gy =0
and d*E(V)/do*(V)} | guy >0 is relevant.

On the other hand, even in this range the indifference curves have a
strange property that is illustrated in Figure 19. Suppose a given income

Ei]

nlad+Y)=n@" +Y)s>n(a”+Y)

o i

(e’ +Y) - i = i
nla"+Y) {[
rla”+¥) (L
0 a (V)
Figure 19

"6 Hicks (1965, p. 115) seems to have been the first to recognize the circular structure of
the indifference curves,
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distribution Y is to be evaluated. Then the subjective price of risk
w(a + Y) for this distribution is an increasing function of wealth!’. To
see this in Figure 19 it is necessary to move upward on a vertical line at
a(V)=a(Y)=const. and measure the vertical distance between each
point reached and the point where the corresponding indifference curve
enters the ordinate. In other words, this curious relationship between
wealth and the subjective price of risk implies that the intensity of
insurance demand

g{aq—oﬂc);fg‘?_m (with Y=a(g—1)-C)

for a given risk C rises if wealth is increasing. All experience suggests the
opposite.

2.1.4. The Mean-Semivariance Criterion
R(V)=U[E(V), _f (v—v*Pf(v)dv]

With a preference functional based on the mean value and the semi-
variance, some of the implausible aspects of the (u, o) criterion can be
removed.

Since values of v>v* do not enter the risk measure, the underlying
utility function,, if it exists, must be linear for v>v* However, for
v < u* the function must be concave in order to depict risk aversion. Let
us check

(30) U(v) = v — a[min(v - v* 0)]?

by applying the expectation operator. Then, indeed, a suitable prefe-
rence functional in terms of expected wealth and semivariance'® can be
found:

L*

(31) E[UW)]=EWV)-a | (v-v*Pf)dy
=E(V)-aal{V).
Figure 20 illustrates the indifference curves described by (31) and the

17T Hicks (1962, p. B0Z) remarks pithily: "That, I submit, is nonsense.' CF. also Arrow
{1965, pp. 35 ) who speaks of an ‘absurdity of the quadratic assumption'.
18 MarkowiTZ (1970, p. 290).
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utility function (30) (where U(v) was shifted in such a way that
U0)=0)".

L
L,

E(V)

]

U (v) 0

Figure 20

This picture of a preference structure looks much more realistic than
the one fitting the (g, o) criterion. With the linear part of the utility
curve the absurdity of negative marginal utility is avoided. There is also
a more satisfactory answer to the question of how the subjective price of
risk depends on the decision maker’s wealth. Of course, with increasing
wealth a, but given income distribution ¥, the semivariance

(32) a2(V) = _"j;{u- 0*RA)dv

v

= [ +a—v*Pfla+y)dy

and, together with it, the subjective price of risk n(V) = auﬁ{V} decline
as long as there is a positive probability of wealth falling short of v*,
The only implausible aspect is that risk aversion disappears completely
if the whole distribution is situated beyond v*. But, since v* can be arbi-
trarily chosen, this is only a minor defect.

The preceding discussion referred to the version of the semivariance
where v* is a constant. Markowitz, however, considered in addition the

19 Analogously to the (u, o) criterion, instead of a;’-.{lr’}. the root a,-(F) could be used.

i)
In this case a system of convex indifference curves would be obtained where the single

curves can be transformed into one another by vertical shifts.
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case v*=E(V). For this version no utility function is available since v¥,
which is the border between the convex and linear segments of this
curve, would vary with each distribution considered.

2.1.5. Result

To summarize, the Domar-Musgrave, the Krelle-Schneider, the (1, a),
and the mean-semivariance criteria can all be shown to be compatible
with the expected-utility criterion in the sense that there are preference
structures that, without restricting the class of distributions to be com-
pared, can be represented equally well by both types of criteria. The
statement even holds for the operationalized version of the Krelle-
Schneider criterion where it is assumed that proportional changes in the
distributions of gains and losses imply proportional changes in equiva-
lent gains and losses of equal size.

The resulting preference structures are, however, often not very
plausible. The following aspects should be stressed in particular.
Because of linear indifference curves, the Domar-Musgrave criterion
cannot be used for the analysis of tax-induced behavior changes for
which it was formulated. The operationalized version of the Krelle-
Schneider criterion designed for the same purpose performs significant-
ly better since convex indifference curves are possible. Less attractive,
however, are the admissible utility curves. In the relevant range, they all
have strictly convex segments indicating risk loving rather than rnisk
aversion. The (i, o) criterion implies a partly negative marginal utility
of wealth and risk aversion rising with wealth; both aspects are absurd.
The mean-semivariance criterion performs better than the (u, o) crite-
rion, but it has the implausible implication that, with bounded probabi-
lity distributions, risk aversion vanishes completely if wealth is suffi-
ciently large.

Broadly speaking, there seems to be an inverse relationship between
the ease of handling of the various criteria and the plausibility of the
preference structures that they have in common with the expected-utility
criterion. This is a dilemma in our search for an operational alternative
to the latter. For example, the rather appealing mean-semivariance
criterion does not seem to have advantages in handling compared to the
expected-utility criterion. An application of either criterion requires
knowledge of the complete shapes of the probability distributions
compared. Fortunately, however, there appears to be a way out of the
dilemma that makes the (u, o) criterion the preferred one despite its
apparent implausible implications. From the view point of handling,
this criterion has attractive features. As a typical example, we should
mention the calculation of 4 and o for a random variable that is the sum
of other random variables. Both parameters can, in a very simple way,
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be calculated from the corresponding parameters of the single items
without utilizing complicated and possibly numerical methods for deter-
mining the shape of the distribution of the sum variable.

The way out of the dilemma is to forgo the exact representation of
implausible preference structures in a (u, o) diagram and to attempt
instead an approximation of realistic utility functions. The following
sections 2.2 and 2.3 deal with the problem.

2.2. The Local Quadratic Approximation

2.2.1. The Asymptotic Efficiency of the Variance

If the true utility function is not quadratic, we can nevertheless try to
approximate it by a quadratic function (parabola). There are two
possible ways of doing this. The first corresponds to the procedure in
the previous section. In the range of the probability distributions to be
evaluated the true utility function is globally replaced by a guadratic
function, i.e., for

E[U(V)]=E(V)—aEXV)-ad*(V)

the parameter a is suitably chosen®®. The second way is a local approxi-
mation. The true utility function is replaced, separately for each single
distribution of the opportunity set, by a parabola such that, at the mean
of this distribution, slope and curvature of both types of utility curves
coincide. The difference between the two methods is illustrated in
Figure 14 by reference to the marginal utility curves which are linear for
the parabola?'. The method of local approximation was first used by
FARrAR (1962, pp. 20 f.) and later by many other authors??. In the follo-
wing, we shall attempt to provide a theoretical legitimation for this
method.

2 The usefulness of plebal approximation for small dispersions was shown by
SAMUELSON (1970). Cf. also SAMUELSON (1967, p. 9). Samuelson’s approximation method
is to fit a parabola to the true utility funetion independently of the decision maker's
opportunity set where v=a (initial wealth).

21 Since the utility function is defined up to a strictly increasing linear transformation
the marginal utility function is defined up to the multiplication with a strictly positive
constant.

22 Among these are Pratt (1964, p. 125) and Arrow (1965, pp. 32-35). MARKOWITZ
(1970, pp. 120-125), Markowrtz and Levy (1979), and Tsianc (1972, pp. 355-362)
calculate clarifying examples in order to demonstrate the usefulness of this method. Other
calculations carried out by Levy (1974) and Loiste (1976) bring about less optimistic
results concerning the quality of approximation. Cf. also Tsianc’s (1974) reply to Levy's
criticism,
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A basic assumption underlying the local approximation procedure is
that around v=u=E(V) there is a range where the true utility function
can be developed into a Taylor series. This means that there must be a
range where the true utility function can be depicted through a poly-
nomial, of possibly infinite degree, by calculating all derivatives of the
true utility function at v= g and setting them equal to the corresponding
derivatives of the polynomial. If this basic assumption is not satisfied, a
first step of approximation is necessary. This step involves representing
as well as possible the true function through a polynomial. It is not
considered here. Instead, we analyze the way in which the polynomial
itself may be approximated.

The value a polynomial U(v) obtains at v= u+ d can be calculated by
developing a Taylor series at v =pu?"

uh U@ TLEL
(33) Ul +d)=U(u)+d' “‘hdz 2@ o 3!(,::}+

4 (Hmgu) denotes the nth derivative of the function U/(.) where the argument takes on
the value v,
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This formula can be used for the evaluation of a whole probability
distribution if all variates of this distribution fall into the range where
the polynomial fits the true utility function. Define

(34) v=u+d and V=u+ D,
Then, applying the expectation operator, we get from (33):

(35) E[U(V)] = U(u) + E(D! liln,{ﬂ + EfDE"UZ—}Tm}

(3
+E{D3}£3—f£}+....

Since, by construction, E(D')=0 this in turn implies

(36) E[U(V)] = Ulu) +E{D2}E::{—ﬁ+ E{D-*}y—{}-ﬁih

where E(D?) = o¥(V),

The level of expected utility can hence be expressed as a function of
the moments u, E(D?), E(D?),... of the probability distribution to be
evaluated. This is an interesting parallel to a conclusion drawn after the
discussion of the two-parametric criteria. The conclusion was that, in
general, it is impossible to describe a preference ordering over arbitrary
distributions with a finite set of statistical distribution parameters.
Equation (36) shows where there is an exception to this rule. If the true
utility function is a polynomial of degree i, then the derivatives of higher
order than / vanish and hence it is possible to express the preference
structure in terms of the first / moments only?. There is, however, no
reason to believe that the utility functions of people form a polynomial
of finite order.

The question we are trying to answer is whether, and in what sense, it
is possible to approximate the polynomial by means of a parabola, i.e.,
to neglect the moments of higher order than two. Assume the decision
maker knows that each probability distribution in his opportunity set
belongs to one of a finite number of linear distribution classes?’,
Consider two arbitrary distributions Vi=u+D, and V,=u+ D, from
the decision maker’s opportunity set. Which of these distributions the
decision maker prefers depends on the sign of the difference in their

4 This result was first achieved by Rickrer (1959/60),
** For a definition of a linear distribution class see equation (I1 A 14).
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expected utilities. Because of (36) this difference in expected utilities is
given by

(37 AU=E[Uu+ Dy)] - E[U(z+ Dy)]
_§s
where
(1)
(38) g=l (“}IE{D) E(DL)].

Suppose now the decision maker has decided to calculate the diffe-
rence between expected utilities solely by reference to the variance and
to neglect higher moments. Then he does not make a mistake if

Unfortunately, in general, we cannot assume that this inequality is
satisfied. It is, however, possible to find out when it is valid. For this
purpose we consider further pairs of distributions from the same two
linear classes to which the distributions V| and V, belong. The pairs are
chosen such that the ratio of their standard deviations equals that of the
initial pair, i.e., a(V,)/a(V;). Let 1 denote the factor by which the
standard deviations of the initial pair have to be multiplied to obtain the
standard deviations of the new pair under consideration. Then, since

@ as=L o, - B,

the difference in expected utilities for a new pair as defined by 4 is
(41) AU= f; S,

and condition (39) becomes

(42) | A28, | > I f} A"S,—‘ et
P
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or, equivalently,

(43) |8 | >

3, 1%,
=1

Obviously the right side of this inequality vanishes for A—+0. Thus,
provided |§;|>0, i.e., provided a(¥;)#a(V;), there must be some
critical level 1*>0 for the factor A below which a choice solely with
respect to the variance or standard deviation must lead to the correct
decision, irrespective of the values the moments of higher order obtain.
If the decision maker neglects the moments of orders higher than two
when A>A* he may by chance pick the right distribution, but he may
also be mistaken. Figure 22 illustrates this argument,

The important feature of the result is that a discrimination between
the distributions considered is possible, in particular, when the standard
deviations arc small, This aspect is surprising since, for a small level of
4, the absolute difference between the standard deviations is also small,
a property that by itself suggests that a discrimination is very difficult.

| sIES o IsdEE ) -~
= = [ 1
a(¥,)a
0 .
A* i A

{initial state)

Fivure 22

At the present stage of analysis the decision maker knows that for
A <A* he may choose among distributions from two particular linear
classes by referring to the standard deviations. His problem, however, is
that, since he does not monitor the moments of higher order, he does
not know which linear classes are involved. Fortunately we can help
him. The procedure that was used for a comparison of distributions
from two particular linear classes can be repeated for other, arbitrarily
selected, pairs of linear classes with the initial distributions having the
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same standard deviations as before. Each time some A1*>(0 is found,
although not usually the same one. Thus all classes of distributions can
be compared and it turns out that, given the total set of linear classes
that may occur, there is some lower boundary A**>0 for all the A*’s
such that if A <A** the decision maker can rely on the standard devia-
tions of two distributions compared without knowing to which particu-
lar linear classes these belong.

A further generalization of the result can be achieved by considering
other ratios a(V,)/a(V,) representing different degrees of accuracy in
the evaluation. In each case standard deviations different from zero are
sufficient for correct decision making, provided that a(V;)# a(},).

Thus the following conclusion can be drawn for a comparison of pro-
bability distributions with equal mean. Suppose there is a sequence of
opportunity sets of n =2 probability distributions each. Within each set
the standard deviations differ, but the pattern of these standard devia-
tions, as given by their relative differences, is the same for each set.
Then, whatever the sizes of the moments of order higher than two, an
expected-utility maximizer can rely on the (u, a) criterion for all those
opportunity sets in the sequence for which the levels of standard devia-
tions are sufficiently low.

A question not considered up to now is which choice should be made
if the distributions to be compared have the same standard deviations.
We cannot assume that in this case the decision maker is indifferent.
Although it was shown that under certain conditions moments of order
higher than two can be neglected in (41), it is not possible to conclude
that these moments are also irrelevant in the present case. In fact, the
third moment will now appear on the scene. Concerning the choice
between distributions from two given linear classes we have, analogous-
ly to (42) and (43), the condition

(44) | 4385 | > ‘ ):‘, JL*'S,-‘

or, equivalently,

. 435,

i=4

(45) |85 ]>

which allows us to rely on the third moment, Using the same argument
as before we can infer that, even without knowing the particular linear
classes to which the compared distributions belong, the decision maker
who considers only the third moment will not make a mistake if 4 is
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sufficiently small. Thus a conclusion completely analogous to that of
the last paragraph emerges if the term ‘standard deviation’, i.e., the
square root of the second moment, is replaced by ‘cube root of the third
moment’, If the third moments do not differ, the argument can be
carried further to show that moments of an even higher order are to be
consulted. This indicates that for sufficiently small standard deviations
there is a lexicographic order of moments and that an ‘indifference’
found by consulting a limited number of moments may in fact be a
pseudo indifference. The fact that, in this lexicographic ordering, the
second moment is on a more important rank than all moments of
‘higher’ orders is the reason for the asymptotic efficiency of the (u, o)
criterion.

2.2.2. Examples

For the sake of illustration and also for use later, some of the implica-
tions of the previous analysis for a local approximation of the particular
utility curves

(46) (@ U)=-e ™, B>0,
(b) Uv)=Ilnuv,
(c) Ulw)=ypv*, p#0,

are now investigated. We first calculate the ith derivatives of these
functions at v=u. These are

(47) @ UYw=—(-pyre,

i—1
(b) UNwy=pu ’ﬁl‘lﬂ{ — k),

(€ UNwy=p" "yl (y—k)

i
k=]

With the aid of these derivatives it is now checked whether the basic
requirement that these functions can be represented by a polynomial is
satisfied. By the use of the Lagrangean formula

R;= ~_ll~d"Um{n+9d}, 0<=O@=<l,
i

we calculate the value of the remainder

(N i+ 1F rii41)
d U_ (,u)_'_d U {,u}+
i! (i+1)!
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If the basic requirement is satisfied then, for all admissible values of @,
R; has to vanish as i—ce. We obtain

L i
(48) (a) lim m=—l—%ﬂfﬂw+mq=0,if ~w<d<m,
i | Fa
I3 N T | i
(b) lim | ;= =1 ( g )]zﬂ,if—Lﬁﬁi—El
e | i \u+od A
I i ol QT
) lim | Ri=|—— +ad)’ el == L
e y+eu)(“ ¢ ]Phﬂk+1]
TR
2 u

Thus, in case (a), the whole function can be developed into a Taylor
series. But, in cases (b) and (c), the standard deviations of the probabi-
lity distributions to be compared have to be small enough to ensure that
the ranges of these distributions do not extend above twice and below
half their mean values?®®.

Now we utilize the derivatives from (47) to specify the expression for
S; in (38). Condition (42) will then, according to the underlying utility
function, become one of the three following inequalities:

49) (@ Al'ﬁzxz’:: Faz=A,
i (=1 il
=1
XSS w AN AL K
o [(2) (-5 )l | £ (5) Sl
;.t 2 =3 'u. f!
i—1
3 : H{?_k}
AVPo-1 || @ (i)*}’h
{E} (H) 2 xz = r; IH ’,! Xils

with x;=E(D}) - E®D)).

26 1t is not surprising that Loisty (1976) succeeds in demonstrating that a Taylor expan-
sion of Inv and yu¥ for the normal (range from — oo to + =) and the log normal (range
from 0 to + o) distributions gives a poor quality approximation, Loistl's overall rejection
of the Taylor expansion (p. 909) cannot be accepted. In his examples, the coefficients of
variation chosen are implausibly large. The reason is that he applies the two functions
mentioned to income rather than to wealth. If his examples are recalculated by using the
utility-of-wealth functions, it seems that significantly better degrees of approximation can
be achieved. It should be mentioned also that Loistl (p. 906) erroneously assumes that the
range in which the utility functions can be developed into a polynomialis0={u+ d)/u) =2;
cf. expression (48) above.
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It is worth noting that, in (b) and (c), the mean u of the distributions to
be compared appears, while in (a) it could be eliminated. In (b) and (c)
the mean plays an importani role. Assume that, given u and given a
particular pair of linear distribution classes, for (b) or (¢) we have calcu-
lated the critical level 1*, below which a choice with respect to standard
deviations is admissible. Then, with a change in u, A* must change in
strict proportion, for the inegualities (b) and (¢) are unaffected if
A/u=const. Since a similar result holds for a comparison of distribu-
tions from all possible linear classes it is clear that the minimum of all
the 1*'s, i.e. A**, is also proportional to the mean, as long as the set of
possible linear distribution classes is given. This implies that in the (u, g)
diagram we can plot a ray through the origin which together with the u
axis encloses a range where, with a given degree of approximation, the
standard deviation can be used to discriminate between probability
distributions of equal mean.

TsianG (1972, esp. pp. 358 f.) claims a similar result for all utility
functions listed in (46). Concerning the function U(v)= —e P’ we
cannot, however, agree with this claim since the inequality (a) in (49) is
independent of u. If, for all u, there is a given set of linear distribution
classes that the decision maker considers possible, then the border line
of the approximation range is not a ray through the origin, but a parallel
to the w axis. The explanation for this divergence is that Tsiang does not
consider, as we do, the problem of approximating a given function
U(v). He assumes instead that the total shape of the utility curve to be
approximated depends on the decision maker’s expected wealth: he
takes the parameter £ in the exponential utility function to be given by
the equation f=k/u, k=const.>0. This, however, is not admissible
since it contradicts the Archimedes Axiom, one of the axioms under-
lying the expected-utility rule. By construction, von Neumann-Morgen-
stern utility U(v) equals, up to an increasing linear transformation, the
‘indifference probability’, whose existence and uniqueness is postulated
by this axiom. With g=4k/u, Tsiang assumes that the indifference
probability depends on the decision maker’s opportunity set. This
violates the uniqueness postulate.

2.2.3. The Shape of the Pseudo Indifference Curves in the (u, o)
Diagram
The preceding section provided the basis for applying Farrar’s method
of local quadratic approximation of the true utility curve. For small
values of g, equation (35) can thus be simplified to

(V) U

(50) B[U(V)) = Ul @) = Ul + =
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It is not difficult to draw from this equation some information that
allows a graphical representation of the preference structure in a (4, )
diagram to be made. The preference structure is described by so-called
pseudo indifference curves. The term ‘pseudo’ is chosen as a reminder
of the lexicographic ordering of moments which implies that strict
indifference cannot generally by ensured by considering only two distri-
bution parameters.

Assume for a moment that U"(v)=const. for all v. In this case, the
local approximation is globally correct because for each v we find
U(v) = b— av® where @= — U"/2. There are genuine indifference curves
that, as shown in section 2.1.3, are circles whose center is on the v axis at
v=1/(2a). What changes if /" depends on v?

If U”#0, the logic of local approximation requires consideration of
an alternative system of circles for each possible . Consider a particular
distribution with mean u=u* and standard deviation o=c* as illus-
trated in Figure 23. Local approximation means setting U"(p) = U"(u*)
in (50) and hence fitting the circles so that their center is on the u axis at
p= —1/U"(u*). The point where the circle that goes through (u* o*)
enters the g axis (below u*) indicates the locally approximated certainty
equivalent S(¥) of the distribution (u* ¢*).

Now consider other points in the (x4, o) diagram that bring about the
same certainty equivalent as (u* o*). The geometrical locus of these
points is a pseudo indifference curve. Obviously, in the case U” #0, the
pseudo indifference curve cannot coincide with the segment of the circle
connecting points (u* a*) and (0, S(V)). The reason is that for u+ u™* we
have U"(w) # U"(u*) and hence another system of circles with a center at
v= — 1/U"(u) has to be consulted. Suppose, for example, U" >0 so that

1

U =0
et Rek | T
Lr.'r{#*]_za
U =0
I”*
E{H{S{F]

Figure 13
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a rise in u increases — 1/U"(u), i.e., shifts the center of the circles
upwards. An inspection of Figure 23 shows that, in this case, at point
(u* a*) the pseudo indifference curve must be flatter than the corre-
sponding circle segment, for otherwise an upward movement along the
pseudo indifference curve increases the certainty equivalent, which is a
contradiction.

The general formula for the slope of the pseudo indifference curves
can easily be calculated from (50):

dU(u, o)
du da alU"(u)
{SI] E Lifu a}= . 3”{# G’}ﬁ F Ul .
: . U'w) +—-U" ()
ou 2

In the special case (/" =0, where the, otherwise, pseudo indifference
curves coincide with the concentric-circle indifference curves of scction
2.1.3, the slope is gU”/U". If however U” >0 or U” <0 then, for a given
point in the (u, o) diagram, the slope of the pseudo indifference curve is
respectively lower or higher than that of the corresponding circle
segment?’. With reference to point (u* ¢*), the possibilities are illus-
trated in Figure 23.

Apart from the comparison with the indifference curves relevant
under global approximation, (51) also carries interesting information in
itself. Since U” <0 and U’'>0 we have

(52) a4 >0 forO<o<a, if @ is sufficiently small,
da LA, )

and
lim @ =0.
a0 da | Uy, o)

The case a—0 is of some significance for it indicates that the pseudo

27 As will be shown below in this section, U'">0 (/" <0) implies a preference for
{against) right skewed distributions. For small dispersions, however, this preference is un-
imporiant since E(D3)=0. U™ only carries the information about how 4%, and thus the
circle center — 1/U", changes with u. The effect represented by U™ #{ is sometimes over-
looked in economic model building. Cf. Hocnaesanp (1974, pp. 45 §.) and Tsiana (1972,
pp- 156 and 364). The correct formula can, however, be found in TsianG (1974,
appendix).
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indifference curves enter the ordinate perpendicularly?®?. This aspect
extends the above remarks concerning the lexicographic ordering of
moments to the first moment. In the case of sufficiently small disper-
sions, even the standard deviation can be neglected in evaluating proba
bility distributions?. The mean or expected value ranks higher than any
other moment. This phenomenon already had been noted by BERNOULLI
(1738, § 9) who explained it by the fact that, for very small dispersions,
the utility curve can be considered ‘as an infinitesimally small straight
line’*!.

It seems worth trying to see how the range of possible shapes of the
pseudo indifference curves is reduced if a realistic restriction on the
shape of the utility function is imposed. This restriction is that the inten-
sity of insurance demand g(ag— C)=[E(C) + nlag - O)/E(C) for a
given risk C should not increase with a rise in wealth or, in the termino-
logy of PratT (1964) and Arrow (1965), that absolute risk aversion
should be constant or decreasing. It can easily be shown that the restric-
tion implies U"(.) >0 so that only one of the three possible shapes illu-
strated in Figure 23 is relevant*. Following Prart (1964), we assume
that the subjective price of risk m(¥) can be calculated from the linear
approximation

(53) Ulp— (W] =U) - U@n(V), V=aq-C,

since its size is very small compared with the range of the corresponding
probability distribution. Setting (53) equal to (50) we thus have

(54) Ulu-n(M]=EUWV)],
(V)
2

Uu) — U'(u)n(V) = Ulu) + U ()

% This properly sometimes does not show up in graphs of the (g, o) diagram. Cf. e.p.
Lutz (1951, pp. 190 f.) or Fama and MiLLer (1972, pp. 220, 222, 223, 282).

29 That du/da—0 for g—0 follows from TorINs (1958, p. 13; his figures 4 and 7 are
wrong in this respect) equation (9) and is the subjet of SCHMEEWEISS's theorem 7 (19674, p.
128). While (52) is derived without particular constraints on the distribution classes
(exceplt for the boundedness assumption), the results of Tobin and Schneeweill are based
on the assumption of a linear distribution class. CI. equation (62} below.

0 The irrelevance of the variance for an evaluation of small probability distributions is
a severe handicap for an experimental assessment of the von Neumann-Morgenstern
function. This remark, for example, applies to the experiments of MosTELLER and NOGEE
(1951) where people were offered bets with prizes that were by some orders of magnitude
lower than in real life decision problems. Cf., to this problem, SAMUELSON (1960, p. 35).

M T, LarLack (1814, p. XVI).

12 The relationship between the wealth dependence of risk aversion and the sign of U™
was shown by STiG1mz (1969a, p. 279) and HirsHLEIFER (1970, p. 283, footnote).



114 Rational Behavior under Risk II

and hence

N
(55) n(vy=2 {2 ) fu)
where

U'(v)
56 e il |
(56) B(v) U

is the Pratt-Arrow measure of absolute risk aversion. Since, given the
loss distribution €, an increase in initial wealth leaves (V)=
a’(aq — C)=a*(C) =const., a rise in the subjective price of risk m will
not occur if f(v) =0, i.e., if

(57) it (- “"““’) <0
o\ Ut

or, equivalently,

— U U'(u) + U () <0
U= () =

and hence, as was to be shown, if

wl
(58) U”{y}-‘zﬂ-yj—‘!}ﬂ.

U'(u)

Expression (58) is an implication of the plausible requirement that
risk aversion should not increase with wealth, But it can also be defended
on its own grounds. By inspection of (36) we find that U" >0 implies a
preference for right skewed distributions which are characterized by*’
E(D*)>0. Such a preference was already claimed by Marsctiak (1938,
p. 320) and Hicks (1967, p. 119). Markowrrz (1952a, pp. 87-91; 1952b,
p. 156) also observed the preference, but he dismissed it as being a prefe-
rence peculiar to gamblers. Gamblers tend to reduce their stakes when
their gambling capital declines and to increase them when this capital
rises, with the result that the distribution of the sum of prizes will auto-
matically become skewed to the right. The phenomenon also showed up
in the game experiments of MosteLLER and Nocee (1951, p. 389). It does

3 Cf. fn. 18 in section A.
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not seem, however, that the preference for right skewed distributions is
restricted to gambling. The institution of limited liability in stock
holding or the stop-loss reinsurance contracts bought by insurance
companies are clear signs of a much broader relevance.

The possibility of deriving indifference curves by local quadratic
approximation is immune to the usual criticism of the (u, o) criterion.
For small dispersions of the probability distributions in the decision
maker’s opportunity set, this criterion, in practice, coincides with the
expected-utility criterion. The method of local approximation is flexible
enough to represent a large variety of aspects of the decision maker’s
preference structure, without imposing any restrictions other than that
the linear distribution classes the decision maker thinks possible are
bounded in v.

For large dispersions, however, the quality of approximation may be
poor. In this case the method of local quadratic approximation cannot
do more than hint at the optimal solution.

2.3. Indifference Curves in the (i, o) Diagram for Linear
Distribution Classes

The deficiency of the method of local approximation in the case of
wide dispersions does not mean that it is impossible to construct indiffe-
rence curves in the (i, o) diagram that will lead to an optimal choice.
Actually, as 1s known from section A 6, it is generally possible to repre-
sent exactly in a (u, o) diagram any preference structure over distribu-
tions from a linear class. Thus, it makes sense to try to find out what the
relationship is between the indifference curves and the von Neumann-
Morgenstern function in the presence of such a linear class.

The analysis is based on the assumption that it is possible to write
expected utility in the form

(59) EUM=E[U(u+cZ)] with Z= V—,u, ElZ)=10, a(Z)=1.
o

If the utility function is continuous in the range from — oo to + oo, 50
constraints have to be imposed on the range of** Z. If, however, the
range over which the function is defined is limited in a particular direc-
tion or if there is a discontinuity or even a lexicographic boundary, Z
has to be constrained in this direction. The following results are then
only valid if the variates of the wealth distributions to be evaluated
cannot go beyond the range where U{.) is continuous and well-defined.

W OF, fn. 16 inch. 11 B,



116 Rational Behavior under Risk 11

What the (pseudo) indifference curves look like when a lexicographic

border can be crossed was shown in section B 1.1.
By implicit differentiation of (59) for E[U(V)] = U(x, ¢)=const., we
find that the slope of an indifference curve is given by

du = _E[ZU"\u+aZ)]

do | U, o) ElU(u+0Z)]
- —cov|Z, Uy +aZ))

E[U(u+cZ)]

(60)

where cov(Z, U')=E(ZU')— E(Z)E(U’) denotes the convariance
between Z and U’ and E(Z)=0 by definition. The assumption of risk
aversion, U” <0, implies cov(Z, U") <0 if a>(. Hence

7
(61) e >0 for o>0,
do | v, o)

Now, o—0 implies U'(u+ oZ)— U'(y) for all variates of Z. This gives

. du
62 lim —
{ } g—0 dﬂ

=(.

Ly o}

Obviously these aspects of the indifference curve in the (i, o) diagram
are perfectly compatible with the results of local approximation as given
by expression (52) above.

Other interesting aspects that may be useful for economic model
building based on the (u, @) approach require answers to the questions
of how the indifference-curve slope changes if

(1) u rises given g (o>0),

(2) 1 and @ change, as represented by a movement along a given indiffe-
rence curve, and

(3) o rises given u (u>0).

We shall now consider these questions.

3 Mote that
cov(Z, X)=E{[Z- E(Z)]|X - E(X)]}
=E(ZX)— E[ZE(X)] - EIXE(Z)] + E[E(Z)E(X )]
=E(ZX)— E(Z)E(X).
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(1) Differentiation of (60) yields

A

ou \do
_E[2U"u+0Z)|E[U"(u+02)] - E[Uu+ 0Z)| E[ZU'(u + 0Z)]
E2[U(u+aZ)] ]

In equation (56) the Pratt-Arrow measure of absolute risk aversion
B(v) >0 was defined. Utilizing this measure we have in abbreviated
notation*®

(63) sgn—(d—“

=sgn [E(ZBU’)E(U")— E(ZU") E(BU")]

= Sgn [E (zﬁfﬁi’l) P E(E%}) <‘
=sgn [ cuv( ,%‘i) ! = ‘mv (Z' E(ﬁﬂi'}) ‘ I

Suppose the utility function is such that the subjective price of risk, as
given in (55), is independent of wealth, i.e., suppose with f'=0 we have
constant absolute risk aversion in the Pratt-Arrow terminology. Then
both covariance terms in (63) take on the same value and hence
d(du/da | y)/du=0. If p'<0 (decreasing absolute risk aversion) the
second term dominates the first, and if #’>0 (increasing absolute risk
aversion) the first dominates the second. Hence

9 (dn 2 (2
(64) ﬂu(dcr ){{}nwﬁ{{}n.

Ui, o)

It will be argued in chapter III A 2 that the intensity of insurance
demand is declining with a rise in wealth, i.e., that the utility function
exhibits the property of decreasing absolute risk aversion. According to
(64), in this case the indifference-curve slope in the (4, o) diagram is
declining with a rise in u, given >0,

I We define

+1 for x>0,
SENX = 0 for x=0,

-1 for x<i.
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(2) Usually the indifference curves in the (g, o) diagram are assumed
to be convex so that
d’u

65 — >(.
(63) do? | tiue)

Indeed, as shown by Tosin (1938), this property follows from the
assumption of a strictly concave von Neumann-Morgenstern function,
i.e., from U”<0. The argument runs as follows?’. Consider two difTe-
rent points (u,,o;) and (i, >) which are both situated on the same
indifference curve. Obviously this indifference curve is strictly convex
if, and only if, for any pair of such points

Hy + UE"‘U'E)_

(66) {#1.U:}~(#z.ﬂz}<< 5 3

The assumption of a strictly concave utility function in turn implies

Uy, +zo Uy, + zo +zo +Za
67) () +z2 |]'+ (tp+2 I}EU(’“’ 20y 12 1)
2 2 2 2
where the imequality sign holds strictly for all z except for the special
case where u, +z0, =1, +z05. Applying the expectation operator we
thus have

E[U{Jui+zﬁ])]+E[U{“2+ZUZ)]{E[U(1‘I+#2+GF+EZZ):|
2 2 2 .

(68)

By assumption, (u,, @, yand (u,, a;) are chosen such that E[U(u, + Za,)] =
E[U(u> + Za»)]. Hence

(69) E[U(, + Zoy)] = E[U(us + Zas)| < E [u(*“‘ ’2'*”2 L ;’ "Zz) ]

This expression has the same meaning as (66) and, since it holds for any
pair of different points on an indifference curve, it proves (65).

7 ScHNeewElss (1967a, pp. 126-128) and FeLpsteimn (1969) prove that not all classes of
two-parametric distributions bring about convex indifference curves. They both refer to
the class of logarithmic normal distributions, where a particular distribution of this class is
completely determined by g and &, and show that, in connection with some special utility
functions, the indifference curves will be concave for o sufficiently large. This result does
not contradict the one reported in the text since the class of logarithmic normal distribu-
tions is not a linear class as defined by equation (14) in section 11 A.
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(3) The change in the indifference-curve slope brought about by an
increase in @, given y, can be considered to be composed of two parts,
the change resulting from a movement along a given indifference curve
du*/da®|, and the change resulting from a movement from this
indifference curve downward to compensate for the change in u,
~ [du/de | y118(du/do | ;)/du]. Hence®®

u>‘

)J’f&
v/ do?

If we bring together the pieces of information given by (61), (64), and
(65), then this expression implies

9 (du
) do (a'cr

o (du
(70) da (dcr

_du
v do

a (d,u
v du\da

):.»0 if §'<0.
L

Thus, in the realistic case where the intensity of insurance demand for a
given risk does not rise with an increase in wealth or, equivalently,
where the utility function exhibits the property of constant or decreasing
absolute risk aversion, a rise in o, given u, increases the indifference-
curve slope.

At the expense of the assumption of a linear distribution class, these
results contirm and extend the findings of the last section to the case
where the decision maker has to choose between probability distribu-
tions with large dispersions. The derived properties of indifference
curves in a (4, o) diagram may, and indeed will later in this book, be
helpful for constructing models of economic behavior under uncertain-

ty.

2.4. Conclusions: The (i, o) Criterion as Proxy for the
Expected-Utility Criterion

From the above analysis, the (u, o) criterion appears to be the practi-
cal alternative to the expected-utility criterion that we were looking for.
Although the intersection of preference structures that the (u, o) crité-
rion has in common with the expected-utility rule does not appear to be
a very plausible one, a good case can be made for this criterion by refer-
ring to the asymptotically lexicographic ordering of moments. With the
aid of the parameters u and ¢ that are on the two highest ranks in this
ordering, it is possible to approximate almost arbitrarily shaped von

W Or, In. 4 in section A.
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Neumann-Morgenstern utility functions, if the dispersions of the
probability distributions in the decision maker’s opportunity set are
sufficiently small. In addition, like many other two-parametric criteria,
the (i, o) criterion can represent exactly the expected-utility criterion
even in the large, if choice is constrained to selecting a distribution from
a linear class. Last, but not least, by using the tools provided by mathe-
matical statistics, the (g, o) approach can easily be handled in practical
and theoretical analysis.

It is not possible to indicate in general whether, in decision problems
under risk, the indirect (u, o) approach is preferable to the direct use of
the expected-utility criterion. If the builder of an economic model wants
to take advantage of the comparative simplicity of the (u, o) criterion,
he has to consider the following possibilities before making up his mind.

(1) The (4, o) criterion coincides with the expected-utility criterion
because all distributions in the opportunity set belong to the same
linear class.

(2) The (u, @) criterion approximates the expected-utility criterion since
1) the dispersions of the distributions to be compared are small,

i) the distributions in the opportunity set approximately form a
linear class (e.g. the class of normal distributions),

(3) The (u, o) criterion cannot be applied since a choice among widely
dispersed distributions from very different linear classes is to be
modelled.

Although (3) may be the possibility with the highest practical rele-
vance, abstract economic models studying only a very limited number of
choice problems at a time will often be able to take advantage of possi-
bility (1). Actually it seems that most of the published expected-utility
approaches to economic decision problems under uncertainty belong to
this category. In the majority of cases, therefore, despite views to the
contrary expressed occasionally by some authors, there is no justifica-
tion for claiming a higher degree of generality for the expected-utility
approach than for the (u, o) approach.

Appendix 1 to Chapter 11

a¥(V)={flv— E(V)P’f(v)dv=[la+y - E@a+ Y))*f(a +y)dy
=y —E(Y)*f(a+ y)dy
={[y2 = 2¥E(Y) + EXY)f(a + y)dy
={y*fla+y)dy —2E(Y){yf(a+y)dy + EXY)|f(a+y)dy
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=FE(Y?) - E*Y)

= iﬂ{[y—E{— Y)l+E(- Y)} fa+y)dy

+ f{u-mi}] +E(Y)Pf(a+y)dy—EXY)
= _Em{[y—E{u Y)P +2[y—E(-Y)E(- Y)+EX—Y)}f(a+y)dy
+ +f{[_y—15',:17}}1+2L1a—f':{}?’)]fs{li’}+E’(Tr+’)}ﬁ{a+y1m*.v—»'“32{1"’1

Now define w= W(y<0) and w= W(y=0); then we get

n =
| bv—E(- Y)Pfla+y)dy

oV)=— = w

+ | {20E(- Y)—2EX~ Y)+EX= Y)}f(a+y)dy

g y—E(Y)f(a+y)dy

i T W
w

+ [ {20E(Y) - 2E(Y) + EX(V)}f(a + y)dy — EXY)
i}

)

{ yf(a+y)dy 0
— (Y)W +2E(- Y)— e w—EX=Y) § flat+ydy

+om

+  afla+pdy i
+ oY)W+ 2E(Y)— = w—EXY) | fla+yydy—EXY)

L]

=g} Y)w+2E(Y)E(Y)w —EXY)w
+ oY)+ 2E(Y)E(Y )iv — EX(Y )W — EXY)
— wo(Y)+ WEXY )+ wa(¥)+ WwEXY)—EXY)

—W(y<0){cX(Y)+EXY)} +W(r=0){a(Y)+EXAY)} —EXY),
q.e.d.
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Appendix 2 to Chapter I1

Define

wr= W(V<p*)= T flv)dv,

I.l"

{ vftvydv

[= =)

E{V*)E&"{ VJ | r.u:fu‘:_T':

T (- E(r"PAw)dy
oV *)maH(V)|ycos=—

L)

W #*
then

u‘

o2(V)= l{u ~0*Vf)dv= | (2 ~200%+ v*2)f(w)dv

- tj[ v f(u)dv o
= _j v f(v)dv —Zu*:;——W*+ U*z_j fv)dv

= | [o—E(WV*) + BV *)PfW)do— 20 E(V *)w*+ p*2y

L o= E(V)P 4 2[v — E(V*)E(V*) + EX(V*)} f(v)dv

— k]
w* il

o EU*E{V*}W* + u;zw*

=V *)w* + j [20E(V*)— 2E2(V*)] f(v)dv+ EX(V*)w*
—2URE(V*)w* 4 priys

=g (V*)w*+ 2BV *)w*—2EX(V*)w* + EXV*)w
— 2URE(V*)w* 4 p*ipp*

=w*[aX(V*)+ EX(V*)— 20%E(V*) + v*?]
=Wu<v®){a*(V*)+ [E(V*) - v*]?}, q.e.d.
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