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Chapter Four
Multiple Risks

Up to now, the analysis has been limited to a single period of time
where a single risk project has to be chosen. This chapter provides a
twofold generalization. On the one hand we discuss the possibility that
the risk projects referred to previously come about by summing up the
incomes of various non-rival subprojects that can be carried out at the
same time. On the other hand, as promised earlier, we proceed to the
analysis of repeated choice under risk. If, in the second case, the opti-
mal sequence of risk projects had to be determined before the sequence
starts!, then, except for the interest problem, it would not differ from
the first. However if we assume realistically that, at the beginning of
each period, the decision maker again may choose between the risk
projects of that period knowing the outcomes of all previous decisions,
then there is a decision problem of a new kind which requires a separate
analysis. Moreover, in the multiperiod case, it seems that we can no
longer factor out the problem of a simultaneous optimization of the
consumption decision which was briefly considered in chapter one.

In what follows we shall be concerned particularly with searching for
decision rules that permit single risks to be evaluated without having to
worry about all the other choices at the same time. In the classical litera-
ture, the most important example of such a rule is to base the choice of a
single risk project on the mean-value criterion. This criterion is founded
in the Law of Large Numbers which implies that, in the case of multiple
risks, the risk aspect of the decision problem may vanish. In the case of
multiple risks occurring simultaneously or sequentially, other rules will
be met.

I This assumplion is made by KRELLE (1969, pp. 95-97, 100; 1968, pp. 172-174) and
SUHNEEWESS (1967a, pp. 173=183; 1968) when analyzing repeated risk situations.
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Section A
Simultaneous Risks

|. The Law of Large Numbers and the Mean-Value Criterion

The Law of Large Numbers, called also ‘Bernoulli’s Theorem’' after
its originator, implies that, when a game is played a number of times,
the average gain converges stochastically towards the expected gain
from a single performance as the number of performances approaches
infinity. Let @ be an arbitrary random variable with finite variance and
o an arbitrary number >0. Suppose a game is played m times bringing
about the (gross, or balance sheet) random gain X, i=1,...,m. Then
Chebyshev’s inequality * says

s
(1) wu@—E{@naa]f(ﬂfl), G50,
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By taking the limit, this expression gives the Law of Large Numbers:

we thus have

ZX;

(2) W( — —=F{X)
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(3) lim W( ‘&—E{X}lza)=ﬂ.
m

oo

This is the usual formulation,

I Jacob Bernoulli, 1654-17035, uncle of Daniel Bernoulli, A presentation of the original
version can be found in TODHUNTER (1865, pp. T1-73).

¢ Cf. equation (11 B 3).

Y1t is assumed that the single performances of the game are stochastically independent
of one anolher.
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Another one, that for our purposes is even clearer, can be given by
comparing two gambles with the stochastic prizes or gains X and X".
Both gambles are carried out m times. It is assumed that E(X) > E(X").
If we set @=ZX(X,— X)) and e=E|2(X;— X])] (>0), then Chebyshev’s
inequality (1) becomes

(4) Wi 20— X)) - E[EX— XD) | = E[Z(X,~ X))}
2 {a[ztx,-—xm]z

E[2(X;- X/)]
A fortiori this implies

(3) Wi - [2(X;— X)) - E[2(X;— XD] = E[2(X;— X7)]}

: [a!zixf-xm]z
T EEZX-XD1]

Assuming stochastic independence between X, and X on the one hand
and X and X on the other, i#/, then, because of

G [Z(X;— X])]=ma* (X - X') and

E[2(X,— X{)] = mE(X - X")

we find the expression

v |2
(6) WEX <ZX)< [G(X-X }]
m | E(X—X")

and its limit

(7) lim W(ZX,=2X)=0.

= o

Since, by assumption, E(X)> E(X"), expression (7) says that the proba-
bility that the game with the higher expected gain will bring about a
higher sum of gains approaches certainty as the number of times the
games are played approaches infinity.

This formulation seems to suggest that the mathematical expectation
can be taken to be the preference functional provided that the assump-
tions underlying the above reasoning are at least approximately satisfied
in practical decision making. But this hardly seems to be the case. The
condition that, as a rule, is violated most severely is that m is sufficiently
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large. Apart from that, however, there is an important effect that, even
when the games are played an infinite number of times, may thwart the
Law of Large Numbers. This effect is studied in the next section.

2. The Correlation of Risks

A condition for the Law of Large Numbers, that is often not satisfied
in practical decision problems, is the stochastic independence of the
single games. How the Law of Large Numbers is modified when inter-
dependencies are taken into account can be well demonstrated by refe-
rence to an insurance example which can easily by reinterpreted for
other decision problems.

Consider an insurance company that has to decide which of two com-
petitive insurance markets K and H it should operate in. In both
markets, there are completely homogeneous risks and given insurance
premiums. A single contract sold in market K brings a net gain XX, and
a single contract sold in market A brings a net gain X*. Assume that
E(X*)> E(X"). Suppose the company decides to sell m policies either
in market K or in market . Can it be almost certain that operating in
market K will bring about a higher level of profit than operating in H
when m is chosen sufficiently large?

In the case of stochastic independence, the Law of Large Numbers
ensures that it can. This is easily seen hy substituting X‘-;Xf{ and
X!=X"in (7). The situation is different, though, if the risks are correla-
ted. The step from (5) to (6) is no longer possible. Instead of (6) the
more general formula

Y LojoXf-xa(xF-x1
(8) WX <Zx]j=— "

[mEXK - x )2
with*

_cov(Xf - X/ x — x1)
a(Xf -xexf - xly

9 0;j gy=1#i=j,

4 The covariarice between two random variables 4 and B, covid, B)=
E{[4 - E(A)]|B— E(B)]}, is a mcasure of the strength of the linear correlation between the
variables. If A and B are stochastically independent from one another we have
coviAd, B)=0. The general formula for the variance of a sum of random variables Ziis

o Y (Z)] = E Y eov(Z;, Z;) where cov(Z, Z;) = 6 H(Z)
]

1

coviZ; Z;) " L g
=Y Y —"LaZa(Z,)= L ¥ pya(Z)alZ).
i _;Z'a{Z,jg[Z,-j ; . P y

CI. foolnote 35 in chapter 111 D.
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is obtained. Here g;; is the coefficient of correlation between the diffe-
rence in the profits obtained from the ith X and H contracts and the
difference in the profits obtained from the jth K and H contracts.
Fortunately, this coefficient of correlation can be reduced to three other
coefficients of correlation that can be interpreted in a more plausible
way: gy and gy for the correlation between the losses® of two
arbitrary, but different, K or H contracts respectively, and g for the
correlation between an arbitrary K and an arbitrary H contract.
With

o (XM =a*X) and EWXM)=EX]) Vij,(N=K H)
(9) may then be transformed to

" Ok 0 (X 5) + 050 (X)) + 204 (X K)a(X )
o HXK)+ X T) + 20k a(XK)a (X H)

(10) Ojf 1,
a step that can easily be verified by splitting (9) and (10) according to the

rules of expectation algebra. Since o,;=p=const. if i+, and since
oXF-Xx)=0(x f - X f 7), expression (8) can be written as

(11) W[Exﬁzzx”]g’”*mml—m)[J(X”‘—X”)T.

m? E(XX-XxH)

(Here the superfluous indices have been dropped.) Hence, the upper
limit of the probability that operating in the market with the higher
expected profit per contract brings about a lower level of aggregate
profits is given by

(12) lim WZXF<zx!"1 <o

m—ran

'G{X}.’_XH} 2
{E{X“"—X”) ;

Obviously, when g >0, this upper limit does not take on a value of zero.

For random variables that are correlated in the way described above,
the Law of Large Numbers has no longer any significant influence. The
reason is that the netting out of dispersions takes place only for those
parts of the variance that cannot be explained by mutual regressions.
The part of the variance which is brought about by factors common to

T With non-random insurance premiums the coefficient of correlation between the
profits from two contracts equals that between the corresponding losses the company
underwrites. We lorgo the proofl of this simple fact.
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all single risks cannot be eliminated by increasing the number of
contracts pooled by the company®.

3. Weber’s Relativity Law as the Proper Basis of the Mean-Value
Criterion in the Case of Large Numbers

The doubts concerning the practical relevance of the Law of Large
Numbers discussed so far were related to the possibly unrealistic condi-
tions for this law, but they were not related to the law itself. The law is,
however, fundamentally called into gquestion by ScHNEEWEISS (19674,
pp. 173-183 and 1968)". He doubts whether it is suitable for legitimating
the mean-value criterion even if all its conditions are met. The probabi-
lity that a multiple performance of one project brings about a better
result than a multiple performance of another does not, he argues,
indicate reliably which distribution of the sum of profits is characterized
by the higher level of expected utility. For example a project, which is
very likely to perform better than some other project, may produce only
a slight comparative gain in utility if it performs better, but may bring
about a dramatic comparative loss in utility, if it performs worse.
Hence, despite the operation of the Law of Large Numbers, this project
might have a lower level of expected utility than the other.

Schneeweil} indicates a utility function which, for the class of normal
distributions, has the property that the ‘u criterion for multiple risks’, as
he calls it, does not hold. It is Freund’s function of constant absolute
risk aversion U(v)= —e % that was criticized above?,

Even when the problem of a wealth independence of risk aversion is
neglected, this function is not strictly applicable, since it neglects the
Broos rule? which implies that U(v) = U(0) for v<0. Assume, however,
that the analysis is confined to projects with £(X)>0. Then the coeffi-
cient of variation of the end-of-period wealth distribution approaches
zero as the number of projects simultaneously carried out nears infinity,
that is,

6 This objection was made to Knight (for example by MieHans (1948)) who, with
reference to the Law of Large Numbers, had contended that cconomic risks can normally
be consolidated by forming large groups. See KniGHt (1921, chapter VIII, esp. pp. 213
and 238 [.}.

7 A similar poinl was made by SAMUELSON (1963) who proved the following theorem:
*IF at each income or wealth level within a range, the expected uvtility of a certain invest-
ment or bet 1s worse than abstention, then no sequence of such independent ventures (thai
leaves one within the specified range of income) can have a favorable expected utility,”

8 Cf, chapier 111 A 2.3.2,

? Cf. chapter 111 B.
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i

ik g E; Xi) Vma(X)

(13) e ~ag+mEX)

""" Elag+ ¥ X))
=1

(ag = interest-augmented initial wealth).

Because of Chebyshev’s inequality this property ensures that the proba-
bility of negative gross wealth vanishes. In other words, the contribu-
tion to expected utility of the modified branch of the utility function
which everywhere takes on finite values becomes insignificant '°. Thus,
since Schneeweifl is only interested in the limiting case m— oo, it turns
out that under the condition E(X)>0 it is permissible to use the
function U(v) = — e # right from the beginning. We shall therefore do
this when considering the argument that SCHNEEWEISS (1967a, p. 178), in
a slightly different form, presented in favor of his paradox.

As shown by Freunp (1956), a combination of the utility function
U(v) = — e 7" and the normal distribution which has the density "'

1 e~ (1/2)[v—w/a]?

V2n

igplies that the aim of maximizing expected utility,

1 B iI/:}[u:—m}n]’-{_ e ﬂ"]dl},

14 max

e JV2n

is equivalent to

(15) max {- ePra?/2) - B ]f%_g' ”f’ZJ'{lIIJ'-#fﬁ‘ﬂljf’afl}du_
JV2n

This expression reduces (o

(16) max (‘u—%az),

W SchneewEss (1967a, p. 182) demonstrates this for normal distributions by allowing
for almost arbitrary modifications of the utility function over the negative half of the
FHCORTE AXIR.

o C1, footnote 22 in chapter 11 A,
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since f=const. and the integral in (15) takes on the constant value 1
independently of u and &.

Assume now that all single projects X, are characterized by a normal
distribution so that XX; is normal, too. Then, because of (16), the
expected-utility maximizer whose preferences are described by Freund’s
function has to choose the projects so as to

]

(17) max { E(aq + ix,-}—a-az{aq+ i}:;]}.
=1 f=1

Because ag=const. and because of the independence of the X, this
postulate is equivalent to

(18) max ¥ (E(X) —£-a %)
(19) = f: max[E(X,-}—%az{X,-}].

The crucial point in (19) is that the best project can be determined
independently of the frequency with which it 1s carried out. Thus we
indeed have an isolated decision rule of the type we sought. Paradoxi-
cally '2 the rule contradicts the mean-value criterion max E(X;) even in
the case where the number of performances approaches infinity, i.e.,
even where, according to the Law of Large Numbers, the project with
the highest mathematical expectation almost certainly brings about a
higher sum of gains than any other project, including the project that
has the highest value for E(X) — fo*(X)/2.

Unfortunately the relevance of this result is unnecessarily limited
since the X; were assumed to be normally distributed 3. However, the
same result may be obtained even without the assumption of a particu-
lar distribution class !4, Only the finiteness of expected utility has to be
assumed, a condition that, for concave utility functions, is definitely
satisfied if the first moment exists and the distribution under considera-
tion is bounded to the left.

12 In Fact, of course, there is only an apparent paradox.

3 ScuneEwelss (1968c, p. 100) formulates a general distribution-free criterion for
examining whether a utility function implies the mean-value criterion for multiple risks.
When verilying the function —e - #¢, however, he again assumes a normal distribution.

4 The argument is similar to the one that SAMUELSoN (1971) raised against the growth
aptimum porifolic model of LATANE (1959).
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According to the expected-utility rule, with m performances, the best
project is characterized such that the postulate

(20) max E[Ul(ag + f:' Xl

or, for U(v)= —e ", the postulate
(21) max E [ — e~ faa+ L% X))

is satisfied. The latter is equivalent to

(22) max E[— ﬁe‘ﬂxr‘],

i=1

so that, because of the assumed stochastic independence of the X, we
finally have 1*

(23) max [| E(—e #Xi) = [| max E(— e #X0).
i=1 i=1

This expression confirms the above result for nearly arbitrary distribu-
tion classes. In the case of constant absolute risk aversion, the best
project can be chosen independently of the number of performances by
reference to the expected utilities of the single projects.

It must be stressed that the assumptions used above are, in fact, more
general than those of Schneeweil although he explicitly (1967a, p. 174)
claims that, for his argument, there are no constraints on the distribu-
tion class '%. Schneewei3 argues that, with an increase in the number of
performances, the sum distribution in any case converges towards the
normal distribution so that the use of equations (14)-(19) is possible
even though the X; are not distributed normally. It is true that, accor-
ding to the Central Limit Theorem, the standardized form of the sum
distribution converges towards the standard normal distribution. How-
ever, does this really imply, as would be necessary, that the expected
utility of the sum distribution converges towards the expected utility of

I5 In the case of stochastic independence between two random variables Z and X we have
cov( X, Z)=0 and hence E(ZX)=E(X)E(Z). This allows for a stepwise transformation of
(22) into (23) since independence between X; and X of course also means independence
hetween —e—#X and —e- 8%, i,

It Schneeweil} assumes that the mathematical expectation if finite.
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a normal distribution with equal mean and standard deviation? The
proof has not been given and cannot be given. Schneeweil} contends
that, for almost arbitrary distribution classes, the approaches (17) and
(20) lead to the same choice of project, i.e.,

. X))

I

(24) lim max {E{aq -

i ]

Y X —g-al{aw

~ lim max E[Ulag + Y. X))].
r=1

i om

If this contention were correct then, as a comparison between (19) and
(23) shows, the following equivalence would have to hold on the level of
single projects:

(25) max [E(X,—}—%UZ{X;}] ~maxE(—e %) Vi,

This, however, is not true for general distribution classes ' but only for
normal distributions, a fact which, incidentally, was shown by
ScHNeEwEISS himself (1967a, pp. 89-98, 146-148). Thus, for the reaso-
ning given by Schneeweill, the restrictive assumption that, for each
single project, the distribution of gains has to be normal cannot be
avoided.

Nevertheless we can conclude that, under constant absolute risk aver-
sion, the mean-value criterion for multiple risks cannot be justified '8,
When confronted with practical decision making under uncertainty, this
result seems highly implausible as ‘rational’ as it might be and as
‘reasonable’ as ScHNEEWEISS (19674, p. 175) thinks the utility function
—e M is. KReELLE (1968, fn. p. 174) therefore attempts to correct the
implausible result by truncating the tails of the probability distributions,
a procedure he justifies by appealing to the frequently observable
neglect of small probabilities. This procedure, however, has an ad hoc
character and cannot be accepted for a normative analysis '°,

The apparent paradox can be solved in a quite natural way if it is

17 Cf. the discussion about the rationality of the (u, &) criterion in chapter [1 D 2.1.3,
esp. footnote 14,

I8 Provided that the decision maker is risk averse. In the case of a linear utility funection
there is, of course, risk neutrality that prevails independently of wealth and hence the
mean-value criterion is appropriate.

19 Krevre (1961, p. 588) argued that the mean-value criterion is a ‘zwingendes Gebot
der Rationalitdt® (imperative dictated of rationality). In KreLLe (1968), there is no corre-
sponding remark; here he merely seems to be interested in a positive description of
behavior,
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assumed realistically that the preference structure of the decision maker
obeys Weber’s law 0. According to chaper 111?! this implies that there is
an indifference-curve system in the (u, ) diagram where the certainty
equivalent is a function of the type

a(V)

(26) S(V)=0 (EV—], )E{ ¥).

Z is defined as a description of the linear distribution class to which ¥V
belongs and it holds that

27) lti'f%ﬂ{b’ Z)=1,
(28) 2b,Z)<1, if b>0,

provided that at least one of the following constellations prevails:

(a) v=>0, 0<e<oo,

— ==+ 00,
a(V) .
——= is small,
(b) E(V) 0<e<l.
for uv— — oo the density converges at least
as fast as with a normal distribution
[ ]
Here, as usual, £ is the measure of relative risk aversion and E(V) < oo is
assumed to be self-evident.
Under these conditions, the best project can be found according to

the maxim

o(ag+ ¥ X)) v
(29) max S(V)=max< 2 = Z|E@q+ LX) ¢
E(ag+ ¥, X)) =

& Vma(X)

-y 2 oo+ e

20 Maintaining the assumption of normal distributions SCHNEEWEISS (1967a, pp.
179-181) finds a similar solution for the utility functions following from Weber's law. He
however needs versions of these utility functions that have already been replaced on the
positive half of the wealth axis (identifying wealth with what he calls ‘income’) by suitable
other functions and thus are not strictly compatible with our preference hypothesis.

2l Cf. chapter 111 A 2.2, A2.3,B 1.2,and B 2.
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which because of lim,,. . Q(.,Z)=1=const. leads to the mean-value
criterion:

(30) lim max S(V) ~ max E(X).

It should be noted that this result is valid although of course, when m
approaches infinity, the linear distribution class Z changes continuous-
ly. Since the limit (27) is independent of Z, this change is irrelevant.
After all, albeit under somewhat more restrictive conditions, we could
also make use of the method of local approximation where 2 is, in any
case, independent of Z.

For a proper interpretation of (30) it is useful to clarify the meaning
of conditions (a) and (b) for the case of single projects. When m— oo,
condition (a) is only satisfied if x>0 and, since lim,,, . .a(V)/E(V)=0,
condition (b) is already satisfied if — oo <x¥<x< %< + o, The bounded-
ness of x satisfies condition (b) since it ensures that the sum distribution
aq + 2x;1s bounded for finite  and approaches the normal distribution
as m—oo 50 that the convergence condition concerning the density of
the wealth distribution is always met. But of course condition (b) would
also be satisfied if X were normally distributed. It is worth noting that
the mean-value criterion is not appropriate if x can take on negative
values and £=1. Whatever the size of the initial wealth, in this case, for
m sufficiently large, v may become negative so that the lexicographic
critical wealth level at v = =0 requires the maximization of the, always
strictly positive, survival probability,

Although the mean-value criterion has now received its proper basis
from the expected-utility theory, the arguments concerning the correla-
tion of risks and the ‘smallness’ of numbers, that were raised above
against the Law of Large Numbers, of course remain valid. Both these
arguments imply that the coefficient of variation of the wealth distribu-
tion never approaches zero so that its size has to be taken into account
when a choice is made among the different projects. Concerning the
smallness of numbers we can surely dispense with an explanation.
Concerning the correlation the reader is advised to verify for himself
that

o(V) _olag+2X;) _ 4 E,: g g;a(X)alX;)
E(V) Elag+ZX) aq + ZE(X))

(31)

»

which with g;=1 and p;;=p =const., i#/, similarly to (11) implies that

a( V) 3 Vm+(m2—m}crz{X} = }/lfm +o(l — 1/ma*X)
E(V) aq + mE(X) %4\ pox) :
m

(32)
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. a(V)_ —~aX)
:ﬂﬁ‘m_@ﬂ)ﬂ'

4. Conclusions

According to the Law of Large Numbers, when two risk projects are
considered, the one that has the higher expected gain with a probability
approximating certainty brings about a higher utility ex posrt if the
frequency of performances is sufficiently high. Thus it appears that, in-
dependently of subjective preferences, the expected gain may be taken
to be the preference functional. This appearance is not deceptive, but
the reason given is wrong. The project that, with a probability approxi-
mating certainty, brings about a higher utility will not necessarily be
characterized by the higher level of expected utility ex ante; whether or
not both advantages coincide is a matter of the utility function. If the
utility function is U(u)= —e~#, so that the decision maker’s prefe-
rences exhibit constant absolute risk aversion, then a choice among
single projects can be made, irrespective of how often they are carried
out. The Law of Large Numbers is irrelevant in this case, If, however,
the utility function obeys Weber’s law, then the Law of Large Numbers
i1s reinstated. For strictly positive distributions of gains and/or weak risk
aversion (£< 1), a sufticiently high frequency of performances ensures
that the project with the highest expected gain brings about the highest
level of expected utility. Thus both of the above-mentioned advantages
coincide. However, for distributions that extend partly over the negative
half of the wealth axis the Law of Large Numbers continues to be in-
effective, if the degree of risk aversion is sufficiently high (g=1).

Apart from these fundamental aspects of the Law of Large Numbers
in practical decision making, it seems that the problems of ‘small
numbers’ and of a correlation of risks are severe obstacles to its effec-
tiveness. Therefore it seems wise to base decisions on the mean-value
criterion in rare cases only.

Section B
Sequential Risks

With the analysis of sequential risks, time becomes a new dimension
in the theory of decision making under uncertainty. Even after the early
studies of von Bonm-Bawerk (1884, 1888) and Fisuer (1906, 1930) this
dimension remained foreign to economic theory for a long time, indeed,
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there are zreas like, for example, the theory of general equilibrium
where it did not appear until quite recently.

The neglect of time is rot necessarily a short-coming. Certainly there
are people with myopic behavior which SAvAcE (1954, p. 16) characte-
rized by the precept ‘You can cross the bridge when you come to it.’
Thus, for the sake of positive analysis, we could possibly be content
with thc thcory presenied up to now, but, at least from a normative
point of view, the observation of myopic behavior is no excuse for
ignoring time. It is certainly unreasonable to close one’s eyes to the
future. Bui, even for describing man’s real behavior, myopia seems a
slender reed. There are good reasons why the Keynesian myopic con-
sumer was dethroned in Frienman's (1957) Nobel Prize winning study A
Theory of the Consumption Function. With this study, which became
famous primarily because of its empirical results, a process of reconsi-
deration of preference theory began that did not put the theory of
economic decision making under unceriainty to one side.

In this section it is assumed that homo oeconomicus oplimizes over
time. We shall see to what extent, if zt all, the results derived in the
previous two chapters have to be modified. Surprisingly, this can be
revealed already, Savage's precept will be shown to be wiser than it
seems at first sight.

The problem of optimal multiperiod planning is approached in two
steps. First, the one-period approach discussed above is generalized 1o
the case of sequential decision making under the assumption that no
consumption occurs until the planning horizon. After this, the assump-
tion is removed and the task becomes to find an intertemporal decision
strategy that maximizes & preference functional over probability distri-
Lutions of consumption paths which has yct to bec spccified. The
strategy involves sequential replanning where, at each point in time, a
simultaneous choice of the optimal risk project for the current period
and of the optimal level of period consumption is made.

[n contrast to the one-period approach, in the multiperiod analysis it
is necessary to consider the decision maker's apportunity set of risk
projects or probability distributions in more detail. In the one-period
analysis there was nothing wrong with assuming this opportunity se: to
be exogencus. In the multiperiod case this assumption no longer makes
sense, singe, in general, the set of alternatives available depends on the
decision maker’s wealth which, in turn, depends on the variates of
previously chosen risk projects. This is very clear for the problem of
portfolio holding, where risk taking involves the lending ol capital, or
for the problem of the investment decisions of a firm which is partly
able to finance risky and profitable projects by credit but where the
credit itself is limited by the amount of equity. Moreover, in insurance
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the decision maker’s wealth is usually very closely connected with the
size of his insurable risk,

A simple way of modelling the relationship between risk and wealth is
to interpret the amount of wealth ¢, net of period consumption that is
available at a point in time [ as a scale factor which, after a multiplica-
tion with a stochastic standard income factor R,,,, determines the
period income Y, available at point in time ¢+ 1:

(1) Yiy1=R, 0.

Up to now the prevalence of a non-random interest income had been
assumed. Since it, too, is proportional to initial wealth, this formulation
includes it as a special case. Given the period income as formulated in
(1) the level of wealth available at point in time £+ 1 is

{2} I'H-Hl=£.25+11‘3+'r.s\

where Q;, =1+ R,,,. With probability distribution ,, | (respectively
R, ) one out of a set of alternative standard risk projects is defined. If
this set is independent of a, then we have what Arrow (1965, p. 37) calls
stochastic constant returns (o scale. Because of

(3) EV, . )=aE(Q, )
and
(4) a(Vis1)=a,a(Q; 1)

stochastic constant returns to scale bring about alternative opportunity
sets in the (u, o) diagram which, as shown in Figure 1, may be derived
from one another by a projection through the origin.

u

() 7
Fipire |
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For the decision problem of a portfolio optimizer, the assumption of

stochastic constant returns to scale is immediately plausible: if Peter
buys a packet of shares for $§ 1000 and Paul buys one for $ 2000 and if,

furthermore, Paul buys exactly twice as many of each kind of share,
after one period Paul’s packet will be precisely twice as valuable as
Peter’s, whatever happens to the share prices. This and further examples
of exact, or at least approximately, stochastic constant returns o scale
are discussed in chapter V which is concerned with applications. Here it
is sufficient to have a rough idea of one application.

In addition to the basic assumption of stochastic consiant returns to
scale the following assumptions, that are helpful for finding a solution
to the multiperiod problem, are made.

(1) The set of standard risk projects contains a non-empty subset of
those projects for which ¢,>¢,.,>0, where g, is a variate of the
random variable Q, and ¢,,, is an arbitrarily choosable small
number. This assumption implies that in the opportunity set there is
at least one choice possibility that with certainty prevents the
decision maker from losing his wealth. Whether this choice will then
be made is another question.

(2) The oppeortunity sets of standard risk projects Q, and Q,., r=1*, are
stochastically independent. The justification of this assumption will
be examined in chapter V case by case.

(3) The Broos rule holds'. It implies
1. that the gross distributions that were referred to in the above

remarks are associated with net distributions which are constraint
to positive values and
2. that for these net distributions stochastic constant returns to scale
(including auxiliary assumptions (1) and (2)) prevail also.
If we distinguish between a gross risk project Qf and its net counter-
part Q then both aspects follow from relationship (I B 1) which
implies

. (0 if Qf<0,
Q=1 0¢ if 0f=0.

The calculations of this chapter always refer to net distributions. To
abbreviate the notation, however, the superscript ‘n’ is dropped.
(4) The decision maker either has no human capital or, if he has, it
comes from an exogenous and non-random flow of labor income
that is discounted at a non-random rate of interest. This assumption
once again makes use of the wealth concept introduced at the begin-

1 Cf. chapter I11 B.
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ning of chapter III. Other non-random and exogenous flows of
income, from whatever source, may occur in a similar way.

With these assumptions and specifications we are well prepared to
attempt the first step into the multiperiod world.

1. Optimal Multiperiod Planning of a Pure Investment Program
under Uncertainty

Consider an investor who at point in time zero has a level of wealth g,
and plans to invest this wealth until a point in time T, 1 <T<oo. Before
T he does not withdraw any capital for consumption purposes but at T
he wants to have his potlatch, the great feast where everything is used
up. This investor’s aim is

(3) max E[U(V7)]

where U(.) is one of the Weber functions described in (111 A 34). If we
set @, =, to indicate that the total wealth available at point in time / is
immediately reinvested then

-
(6) Vr=ag I_ll 2

so that (5) becomes

;
(7) max E[U(aq rl:l1 Ol

The maximization operator in this formula refers to the choice of a
standard risk project for each period. The standard risk projects do not
have to be identical nor do they have to be already determined at point
in time 0. It is assumed that they have to be determined no earlier than
one period before their outcomes are revealed.

1.1. The Growth Optimum Model

On the basis of the approach of KeLLy (1956), the following solution
was suggested by Latane (1959, cf. esp. the footnote on p. 151).
Independently of the decision maker’s personal preferences, the risk
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projects should be chosen so as to maximize the expected logarithms of
the end-of-period wealth distribution?:

(8) IT:I;IB,XEUH(HE £r. . V.

This is the classical decision rule proposed by Bernoulli. The reason for
it is, however, completely different.

Like the argument in favor of the mean-value criterion for multiple
risks, it is based on the Law of Large Numbers. Suppose that in a
particular period the risk projects @ and Q' are available with
E(lnQ)>E(InQ’). Then, an immediate application of the above
formula (A 6) yields

T T
(9 W[U(ay ,H. 0,) = Ula, I] o/l
T f
= Wirlfll Qfsrljl Q!
T T
= W{Inrl:ll O, < In:]_—[l 0/1
T T
= W[,;. In Q,.ﬂz:l InQ;]

vl [a[ln Q-In Q_’!J
' E(InQ—-InQ")

and, because of (A 7),

T F
(10) lim W{Uta, [1 )= Uta T 091 =0.

Thus, since max E[InQ,, (]~maxE[In(a,Q,,,)], in the long run the
choice of the project for which the expected logarithm of end-of-period
wealth is maximal leads, with a probability approximating certainty, to
a higher level of final wealth and hence to a higher level of utility.

The result can be criticized in that it was derived on the basis of an ex
ante decision over all projects rather than from a sequential decision

2 Cf, also LATANE and TuTTLE (1967), BrREmANN (1960), and THORp (1971). On a
theoretical basis Hakansson (1971) compares the (u,0) with the growth optimum
approach, and Rovir (1973) draws the corresponding empirical comparison which, how
ever, cannot, in principle, have a discriminatory power. Cf. footnote 8 below.,
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making process’, Moreover, Latané’s conjecture that the result implies
the inequality

i T
an - limEUG 1)1 > lim E[U(a 11 0]

T

is wrong for a reason similar to that which prevents the Law of Large
Numbers, by itself, from legitimating the mean-value criterion. To
promise a higher utility with a probability that approximates certainty
does not necessarily mean to indicate a higher level of expected utility.

1.2. The Solution by Means of Stochastic Dynamic Optimization

The true solution of the optimization problem (14) is provided by
Mossin (1968a) . It is based on Bellman’s Principle of Optimality which
says that>®

T
(12) max {E[U(V7)]|o,= E[Ua [1 001}
implies
max{E[UV Pl |,.=E[U@. [1 )} Wr* 0=t*<T-1.

="+

This implies that, at point in time zero, the optimal decision must be
sought under the constraint that the wealth realized at point in time 1 is
reinvested in the best possible way as seen from that point in time, that,
similarly, the wealth available at point in time 2 is optimally reinvested
as seen from point in time 2, and so on until finally the chain of reinvest-
ment is interrupted at point in time T by consuming the then available
wealth.

From a long-run point of view the optimal decision at point in time
zero can be determined by a process of period-by-period recursive

' For the same reason, we do not consider the multiperiod approach of Torin (1965)
which is, quite correctly, criticized by Mossin (1968, pp. 217 .).

4 SamuELsoN (1971) discusses the growth optimum model and achieves the correct solu-
tion. His procedure, however, is slightly unsatisfactory since he determines the optimal
sequence of risk projects in a one step decision at the beginning of the sequence.

3 Beviman (1957, p. 83) described thai principle as follows: *An optimal policy has the
property that, whatever the initial state and initial decision are, the remaining decision
must constitute an optimal policy with regard to the state resulting from the first decision.’

% In words, max E [U(V7)] | 5 means: ‘Maximize the expected utility of wealth available
at the planning horizon 7 subject to the constraint that the initial wealth at point in time
2010, ag, 15 given.'
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optimization where, at each point in time ¢*, 0<7*< T—1, one of the
postulates

{m%x}{E{V}'£'}|a,.=E[{ﬂ';* I1 Q) “1}=z.e{s}1,

min r=0%%|
(13) 7
max {E(ln V7)|, ., =Elln(g. [| 0)}=z+ &'=1,

=1+l

has to be satisfied. Here, U(uy) is specified by the Weber functions
(1—&’)w' ¥, 0<e'#1, and Inv, £'=1. The measure of relative risk
aversion &’ has, in principle, the same role as the parameter ¢ used up to
now. The reason for chosing another symbol is that ¢ is to be kept for
the measure of relative risk aversion relevant for the decision in the
current period. The constant factor (1 —¢”), which does not affect the
optimization task and which, in any case has the sole function of deter-
mining the sign, was dropped so that for £'>1 a minimization of the
expected value has to be undertaken. In what follows, it is not mentioned
when a maximization and when a minimization is appropriate. We agree
that only in the case £'>1 a minimization is carried out. In order to
avoid unnecessary repetitions, all functions are discussed simultaneous-
ly. The case of the power function is always written first and the case of
the logarithmic function always comes second.

Point in Time t*=T— 1

Suppose there is only one period left before the potlatch and, by
chance, a wealth of size ay_, has been accumulated. Then, (13) implies
the usual one-period decision problem which is to maximize the expected
utility of end-of-period wealth V' given the initial wealth a,_,:

[mml (B Ma,_ =El@r_,Qp)' ~°] =ar_§E(QF ©)}
~ait "2 migp)

=ar_ir=zr;.
max{E(InVy)|, =E[n(@,_,;Q7)]=Ing,_,+E(InQ,)}
=Inay | +maxE(InQ;)
=Ina,_+jr=zr_,.

(14)

It is worth noting that obviously the choice of one project out of the
set of available standard risk projects Oy can be made independently of
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the available investment capital @ _,. This is a particular property of the
Weber functions that is usually called separation property’.

Point in Time t=T-2

Two periods before the planning horizon, the level of wealth
Vi =Ar_ | available at point in time 7— 1 is a random variable, while
the current level of wealth a@y_ - i1s given historically. From (13) we then
have

Zr-g= I’,‘,"‘,,?ﬂ EWVE “Vuy ,=El@r2Qr 100" 1}

(15
) 2r-z=max{E[InV|, . =E[n(a;_,Q0r_,Qpl}
and
Zr_a=ar-y [',‘T‘l?ﬂ EQ7r~§ {'r’;?j} E(Q7*)
=ar_Sir [‘,‘;?ﬂ EQ} %)
(Iﬁ-} Eﬂj;"lgj]"_ [

Zr_2=Inay_s+maxE(InQr_;)+max E(InQ;)
= lI'lHT_z +Jjr+max E(ln QT— i)
=lnay ;+jr_-

In the case e£+#1, the step from (15) to (16) is possible, since
a@y_;=const. and Oy is independent of Q_, so that
El(ar-,0r,Qr) “1=ar 5 EIQ;_ 07 *
=ar 5 EQr DEQF ).
There are two reasons for independence. One is the assumption of
stochastically independent opportunity sets of standard risk projects
that was made at the beginning of section B. The other is the separation

property. It is worth noting that, in the case £¢'=1, the assumption of
independence is not needed because

Elln(a; Q7 1Qp)l=Ina; ,+E[InQy_+1InQy]
=dy +E[InQr_ ]+ E[InQy]

holds even if Qy_, and Qy are correlated.

7 Pye(1967) and, less explicitly, also Arrow (1965, pp. 28-44) have detected this impli-
cation of constant relative risk aversion.
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Point in Time t*=T—1

We can now continue by using a procedure similar to that used for
point in time 7—2. For point in time T— 7, including the case t=T
which characterizes the ultimately interesting point in time 0 where the
current decision has to be made, we have
Zr e =Ar_fr 42 El:;?ﬁi E(Qr %4 1)

T "
with jT-- 2= n imax} E{Q} O L

g min

(17
} Ir-c=Inar_ +jr 2+ maxE(InQr ., )

3
with jr_ . ,.= )} maxE(InQ,),

t=T—1412

so that the decision at /*=T— 7 is optimal from a long run perspective
if, and only if, it satisfies

{Eﬂ E(Qi)~ [ﬁ?ﬁf} E[(Vie1) "]
18 N *
i maxE(InQ,. . |)~max E[ln(V,. )] RARE (U (Kirs 1)

This is an interesting result, for its says that, if the decision maker
evaluates wealth available at the planning horizon in a way consistent
with Weber’s law, he should have a derived preference ordering over
end-of-period wealth that also is consistent with Weber’s law. It is
worth noting, too, that the risk aversion parameter £, characterizing the
derived utility function for end-of-period wealth, is identical with the
corresponding parameter €' of the utility function for evaluating wealth
available at the planning horizon. We can therefore use the same symbol
(U/) for characterizing both functions. Thus the stupid, myopic man,
who merely calculates expected utility of end-of-period wealth, reaches
the same decision as the smart man, who optimizes his current decision
with respect to all future alternatives, provided that both are equally
risk averse.

Some words must be added concerning the existence of solution (18).
They also apply to the other approach to the intertemporal optimization
problem that will be discussed below, but they will not be repeated
there. If all distributions @, ; of the opportunity sets available at points
in time r=0,1,...,7—1 have the property Q,,|>¢y,>0 then the
existence is ensured since

1—&

1—-¢' : el
UG min) = [fnq E Ymin > ﬁ:f 1*
T » =
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is finite and hence also j, for r=1, ..., T. Because of the lower bound of
U(Q,)=(1 —s’}Q}_”r, £'<1, the existence is even ensured for distribu-
tions with g..;, = 0 if risk aversion is weak. What changes if, with ¢'=1,
strong risk aversion prevails and also g,;;, =07? In this case the opportu-
nity sets may contain risk projects with

Ayl — &
E[U(Q))= [gg; Ay ]} =

so that j, becomes infinite if it comprises at least one such project. In
fact, however, the latter will not occur. According to the definition of /
given in (17) only the maxima of E(InQ,) or the minima of E(Q] %),
g’>1, enter the formula for j and these are finite, since, by assumption,
each opportunity set contains at least one risk project with Q,>¢q,,;, >0
that clearly dominates those which render j infinite. Thus an optimal
solution exists even in the case £'>1 and g,,;,, =0.

A more important implication of the preceding considerations is that
the multiperiod approach which was first formulated for actual or net
wealth can, by using the BLoos rule, easily be generalized to an evalua-
tion of balance sheet or gross distributions incorporating the possibility
of negative variates. The implications of the BLoos rule, for example the
indifference curves in the (u, o) diagram for linear distribution classes,
can be almost completely maintained. The only new constraint is that,
in the case ‘=1, the opportunity set must contain projects with
Q> @min=>0. For all the examples of application studied in chapter V,
this constraint will not be binding.

The result (18) obviously implies that Latané's argument for the
short-run rule max E(In ¥) cannot be valid. It is true, this rule is
included in (18) as a special case®, but the reason has nothing to do with
the Law of Large Numbers. It is simply that Weber's law shows up in
the form of a logarithmic utility function. In the presence of a power
function which is also compatible with Weber’s law the rule max E(In V)
definitely is suboptimal.

The result of this section may be summarized as follows. Suppose, in
a multiperiod investment program, the decision maker attempis to
maximize the expected utility of wealth at the planning horizon, his
preferences are compatible with Weber’s relativity law, and stochastic
constant returns to scale, including auxiliary conditions, prevail. Then
the current decision is optimal, if the expected utility of net wealth at the

% Thus an empirical discrimination is impossible, and the empirical evidence that RoLL
{1973) was able to find in favor of the growth optimum model supports equally well the
hypothesis that people choose risk projects in lne with an intertemporal optimization
approach based on Weber's law,
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end of the current period is maximized by using the utility function for
net wealth at the planning horizon. Because of the BLoos rule, used here
with a minor constraint, this result applies analogously to gross distri-
butions that partly extend over the negative half of the wealth axis.
Thus, for example, the indifference curve systems of Figures 10 and 12
in chapter I11 can still be used for finding the optimal distribution out of
a set of wealth distributions that all belong to the same linear class.

2. Optimal Multiperiod Planning of a Consumption-Investment
Program

The aim of reinvesting all returns and consuming the total stock of
capital available at the planning horizon T, which was assumed above,
does not seem to be realistic for most investors. It is more realistic to
assume that the funds available at the beginning of each period can, in
principle, also be used for consumption (in the model of the firm: for
paying dividends). To what extent they actually will be used for current
consumption has to be determined by an optimization calculus”®.

Of crucial importance for such an approach is the question of how to
model the preference structure of the decision maker. This question is
studied in the following section B 2.1 and, as a result, a hypothesis con-
cerning the shape of the multiperiod preference functional is formula-
ted. The implications of this preference functional are derived in section
B 2.2 and interpreted in section B 2.3.

2.1. The Multiperiod Preference Functional

Assume, as before, that there is a given planning horizon 7. Then the
decision maker’s task is

(19) max R(Cy, ..., Cr_1, V1),

where R(.) is the preference functional yet to be specified, (Cy, ..., Cr_)
a stochastic consumption path, and V¥ a stochastic level of wealth
available at the planning horizon. In the model of the firm, ¥y may be
interpreted as the final stock of equity capital available for further

9 PHeELPs (1962) considered this problem in a stochastic multiperiod model, bu
excluded the choice of the optimal risk project by assuming that only one such project is
available to the decison maker. The simultaneous analysis of the twofold problem of how
much to invest in which project was studied in two-period models by Sanpmo (1968, 1969)
and Tomin (1968). Multiperiod models, developed subsequently, that offer simultaneous
solutions to both problems are mentioned in the text.
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investment and, in the model of the household, it may be interpreted as
the legacy at the end of the decision maker’s life.

Concerning the properties of R(.), there are in principle two
problems. On the one hand, what R(.) looks like in the special case of a
non-random consumption path has to be clarified'” and, on the other,
the particular aspects that emerge in the case of uncertainty have to be
determined. Only the second problem is considered in detail here. Con-
cerning the first, use is made of the available literature.

The preference functional for planning problems under certainty is
assumed to be

Tl
(20) = Eu Aale) +Aruwe); Anir>0, #'()>0, u"(.)<0.

While X is an ordinal function defined up to a strictly increasing mono-
tonic transformation, the period-utility function wu(.) is defined up to a
strictly increasing linear transformation. The parameter A, is a period-
specific weight factor. The preference functional was introduced in a
rudimentary form by Ramsey (1928) and supplemented with discount
factors by SAMUELSON (1936/37). Its axiomatic basis was established by
Koopmans (1960), and it has been used by Strorz (1955/56),
MobicrLiani/ BRuMBERG (1955), and many others.

Despite its axiomatic foundation by Koopmans, (20) is not a generally
accepted maxim for wise intertemporal planning. The reason is primari-
ly the intertemporal separability implied by the additivity of the functio-
nal!', The separability implies that the level of consumption in one
period has no influence on the preference ordering over alternative con-
sumption paths during the periods remaining. Strictly speaking, such an
implication is not realistic. However, there are reasons for expecting
that the complementarities or substitutabilities between the levels of
consumption of two different points in time are weaker the further these
points are from one another so that, simply by increasing the length of
the periods, the disturbing influences can be reduced '2. Thus, among
the conceivable preference functionals which are compromises between
simplicity and realism, (20) seems to be an attractive candidate.

Despite its shortcomings, it must be admitted that (20) has properties
that a multiperiod preference functional should, in general, have. An

W For the sake of brevity the term ‘consumption path’ is here used to characterize the
whole sequence (¢1, ..., 1, U7) including the level of wealth vy remaining at the planning
horizon.

HCf, Koormans's (1960) postulate 3.

12 This was stressed by Arrow and Kurz (1970, pp. 11 {.). Cf. however Stronz (1957
and 1959).
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important aspect, implied by u’(c) >0 and u"(c) <0, is that the marginal
rate of substitution between the consumption levels of two points in
time ¢ and t*, t 1%, is negative,

dc; L]
dc,

u'(c) A,
-——— =
= WU(Cra) Ay

(21) :

and in addition diminishing in absolute terms:

Gy

de;

AR (e YA u"(e) — ALu(e )P A e u"(cpe) 5

= > u'(cy)?

Another aspect is represented by the weight factors 4,. Because of the
assumption of constant period utility u(c,) we have —de,+/dc; | s=1 if
A=A, and cp=c,, (#t* Thus, with A,=const.>0 for all ¢, a
rate of time preference —dc,+/dc;| »— 1 different from zero can only
occur if’ ¢;+#¢;: only von Boum-Bawerk’s (1888, pp. 328-331) first
reason for time preference, namely, the Verschiedenheit des
Verhaltnisses von Bedarf und Deckung (difference in the relationships
between needs and funds) is captured. Von Bohm-Bawerk’s second
reason (pp. 332-338), the Minderschitzung zukiinftiger Bediirfnisse
(underestimation of future wants), which occurs because the future
seems less important when looked at from the perspective of the
present, is taken into account by the subjective discount factors 4,. In
dynamic optimization models it is usually assumed for these that'?

(23) dicishsl  Hrer=d

so that, even in the case ¢,«=c¢,, there is a positive rate of time prefe-
rence: —de,/de, | s—1>0. For the sake of illustration, Figure 2 shows
the indifference curves for both the case without time preference and the
case where 4,.< 4, for r*>1 in Fisher’'s two-period diagram.

Although there can be no doubt that people do see their future wants
in a diminished perspective, it is by no means clear if account should be
taken of this fact in multiperiod dynamic optimization. Actually, von
Bohm-Bawerk’s argument is based on the irrationality of man: ex post

¥ This formulation includes the case where, with the passage of time r, the relative
weights 4, /4, =1, of the future periods, as seen from point 7, are changing. If we
tollow StroTz (1955/56) and postulate that 4,4 /4, is independent of 1, then 4,=e &
emerges, where g is the rate of discount in the sense of von Bohm-Bawerk's second reason,
But why should 4, ;74 be independent of ¢? There seems to be hardly any justification
tor discrediting as irrational the possibility that the current rate of time preference chunges
with age.
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without time

preference
s

A tt(¢es) + A u(e,) = const.

\\-h ulcs) +ule,)=const.

with time
_ preference

0 : ,

Figure 2

he regrets having underestimated his wants '%, Irrationality, however, is
not particularly appropriate in a dynamic optimization model, where a
very high level of rationality is otherwise assumed. But at least, if the
approach is interpreted in the sense of an individual life-cycle model, the
reason for time preference, instead of being an underestimation of
futures wants, may be a lower valuation of these wants which people
stick to even ex post. The sentiment ‘just as well I had a good time while
I was still young enough to enjoy it" is a pertinent example of this kind
of thinking. Thus we maintain (23) as characterizing the normal case
without, however, excluding the possibility A,=1Fi<T.

The rule (23) does not cover the factor Ay. The reason is that this
factor not only has a discounting function but also estimates the impor-
tance of the legacy left to the heirs. If the model is interpreted from the
viewpoint of a firm, then A +is a measure of the importance of the equity
capital available at the planning horizon,

2.1.1. Specific Risk Preference in Mulliperiod Planning

How can the preference functional (20) be generalized to the case of
stochastic consumption paths? One possibility is simply to put the
expectation operator in front, i.e., to set

T=1
(24) R()=E[ L 2(C)+iru(Vz))

14 A similar point of view is expressed by Picou (1932, p. 25): ... people distribute their
resources between the present, the near future and the remote futore on the basis of a
whaolly irrational preference.’ CF. also Strory (1955/56, esp. p. 17R8).
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This is what Hakansson (1969 and 1970a), SAMUELSON (1969), MERTON |5
(1969), Leranp (1974), and many others have done without, however,
their making any attempt to justify the procedure.

The approach, unfortunately, is by no means satisfactory, since it
does not allow for a specific risk preference. Suppose there are two
people who, for all conceivable multiperiod decision problems under
certainty, reach the same decisions. Is there any reason to assume that
these people will also act in the same way when making decisions under
uncertainty? Surely an answer in the affirmative cannot be given, for
they may well differ in their risk preferences. Specific differences in risk
preferences are clearly excluded by the preference functional (24).
People who act alike under certainty have, up to a unique positive linear
transformation, the same u’s and A’s and hence are forced to behave
alike under risk as well.

This by no means implies that (24) does not bring about risk averse
behavior. As the cited approaches show, the concavity of period utility
in fact ensures that, for the choice in each period, risk aversion prevails.
The only problem is that this risk aversion is simply a byproduct of the
concavity of #(.), which in the non-stochastic model has the task of pro-
viding for a diminishing marginal rate of substitution between the con-
sumption levels at two points in time (cf. (22)) and hence ensures that
the decision maker does not concentrate his consumption in a single
period. What is missing in (24) is an additional tool by which the
decision maker’s risk preference can be manipulated without at the
same time altering the preferences relating to the time profiles of con-
sumption in a world of certainty. Fortunately, a suitable tool seems to
be available.

By its very nature, the deterministic preference functional = from (20)
is defined up to a strictly positive monotonic transformation. This
means that, without any behavioral implications in the case of certainty,
we can replace 2' by ¥(S) where ¥(.) is an arbitrarily choosable, strictly
increasing, function. Of course, this does not affect the marginal rate of
substitution under certainty

d¥(.) aX
(25) dcy» 2 axr qé_ﬁ': _ WA
de, | P(X) a¥(.) ax U ) Ay

ax dcs

(cf. (21)). However, if we follow the procedure of Hakansson,
Samuelson, and others and construct the preference functional for the

I3 Merton uses a model with continuous time.
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case of uncertainty by simply putting the expectation operator in front,
;O
(26) R()=E{¥] _E"A:H{Cr} +Aru(V)l},

then, in general, the shape of the function ¥(.) takes on an important
role. While positive linear transformations of ¥(.) are irrelevant,
changes in its curvature, like changes in the curvature of the one-period
utility function, do have a significant influence on the optimal decision
if probability distributions of consumption paths and hence probability
distributions of X are to be evaluated, Hakansson ef al. assumed P(.) to
be linear. This is a special assumption that is possible but arbitrary. 4
priori it is no more and no less arbitrary than any other special assump-
tion for ¥(.). Rather than arbitrarily assuming a particular shape of
¥(.), it is therefore tempting to use this function as a specific risk
preference function'®, that is, to use it as the additional tool we sought.

Provided the deterministic preference functional is of the type (20),
the use of the specific risk preference function ¥(,) is not only plausible,
but is close to being a cogent rule of logic, as cogent, at any rate, as the
expected-utility rule in the one-period case. This can easily be shown
with the use of four axioms, the first three of which are known in
principle from the one-period analysis (c¢f. chapter I1 C 2.1).

(1) Axiom or Ordering: The decision maker has a complete weak orde-
ring over probability distributions C of consumption paths

C=(€0s €)s - -» C7— 15 UT).

(2) Axiom of Strong Independence: Suppose that, comparing the
probability distributions C' and C?, the decision maker reveals the
preference C'{ <} C% Then, combining these distributions with an
arbitrarily given third distribution C?3, it holds that

(;, lgaw){i}(gz IESW) ifo<w=l.

(3) Archimedes Axiom: Consider three deterministic consumption paths
¢!, 2 and ¢ with ¢'< ¢2< ¢3, For these paths there is one, and only

1 For the one-period case, such a function was postulated by KrevLre (1968, pp.
144-147) in order to adapt a preference structure over non-random outcomes to the case
oof uncertainly. Related ideas seem to underlie the approaches by DhamoNnn/STicoiTz
(1974 and Kirnsteronv/ Migvas (1974),



236 Multiple Risks v

one, probability w, 0<w<1, such that

w l—w
e (c' e? )
(4) Koopmans Axiom: The decision maker’s preference functional for
multiperiod planning problems under certainty is

T—1
= Eﬂl,u{c,j + Apu(vy).

Axioms (1), (2), and (3) are very similar to the corresponding axioms
for the one-period case and hence do not need any further explanation,
Axiom (4) saves us from searching for an appropriate preference func-
tional for planning problems under certainty. For a possible axiom
system producing the non-stochastic preference functional X the reader
is referred to KooprMans (1960). In the following, the proof showing why
axioms (1)-(4) imply the preference functional (26) for the stochastic
case is sketched,

As we know, the additive preference functional required by axiom (4)
can partly be altered without affecting its behavioral implications in a
world of certainty. Suppose, however, that £ has been given a special
functional form which is compatible with the decision maker’s prefe-
rence over non-random consumption paths, so that there is a unique
mapping from the set of these paths to the set of real numbers.

Consider now the Axiom of Strong Independence. This axiom
includes the limiting case where C? is a degenerated ‘probability distri-
bution’ which is a particular non-random consumption path. It there-
fore says that, in a probability distribution of consumption paths, those
paths with the same X can be interchanged without altering the evalua-
tion of the whole distribution !”, This is an important implication, for it

T A criticism against this property of the Axiom of Strong Independence was raised by
Diamonn (1967) in a comment on Harsanyi's (19535) famous derivation of an additive
social welfare function based on the von Neumann-Morgenstern axioms. Diamond
referred to consumption paths over different generations rather than over different
periods in an individual life span. Consider two non-random consumption paths that are
equivalent from a welfare point of view but which favor different generations. Is it
permissible to interchange these paths in a probability distribution of paths, withou
asking which generations are favored by the other variates in the probability distribution?
Diamond answered this guestion in the negative, arguing that there should be an element
of justice in the social welfare function, in the sense that chances should be evenly distri-
buited among the generations. This criticism clearly suggests that we must be careful when
using the preference functional (26) for intergenerational welfare comparisons. In the
present case, however, the crificism does not apply. There is no point in postulating
‘justice’ between the years in a single person’s life span.
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means that, in evaluating probability distributions of consumption
paths, the decision maker is only interested in the corresponding proba-
bility distributions of Z. The Axiom of Independence therefore allows
the multidimensional risk problem to be reduced to a one-dimensional
problem.

The reduction in dimension permits axioms (1)-(3) to be transformed
in a way that elucidates the similarities between the one-period and the
multiperiod choice problems under uncertainty. Axiom (1) implies that
the decision maker has a complete preference ordering over probability
distributions of 2. Axiom (2) can be transformed into an analogous
postulate referring to three distributions of X rather than of consump-
tion paths C. And axiom (3) can be reinterpreted in such a way as to
require the existence and uniqueness of a probability in the open unit
interval that renders the decision maker indifferent between a binary
distribution of &' and a non-random value of X which is placed strictly
between the variates of this binary distribution. In short; the reduction
to one dimension implies that axioms (1)-(3) bring about postulates that
are identical to the corresponding one-period axioms of chapter II C
2.1, except that they refer to values of X rather than to wealth.

Since the Non-Saturation Axiom assumed in the one-period analysis
is satisfied for X by its very definition, we may now combine the postu-
lates just derived in the same way as shown in chapter 11 C 2.2 for the
one-period von Neumann-Morgenstern axioms. If account is taken of
axiom (4) the result is the preference functional (26) for an evaluation of
stochastic consumption paths.

2.1.2. A Preference Functional According to Fechner’s Law

In the previous section rational behavior for multiperiod planning
under uncertainty was studied. Analogously to the one-period case, the
task is now to put some life into the preference functional (26) by adding
a special hypothesis on the preference structure of man. For this hypo-
thesis we again make use of Weber’s law, but, in addition, we also
employ Fechner’s law that, up to now, has only served as a means of
interpretation.

Weber’s law can be used by replacing end-of-period wealth from the
previous analysis with a factor x>0 which measures the level of a
consumption path (x¢g,...,xc¥_ |, xvf) that arose from a time-profile
preserving multiplication with x of an arbitrarily chosen basic path
(¢ ..., €F 1, vF). This procedure is fully compatible with the definition
of wealth given at the beginning of chapter 111. According to the Weak
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Relativity Axiom it is then required that

T=1
2N o —Eu Aqulxe®) + Arulxvi)]

e

g
x'=FPLY LulcH)+ 17u(wh], &'#1
r=0

-1
Inx+ [ Y Aulc¥)+A-uwE)], &=1
||._. f=0

Here, £’ is the measure of relative risk aversion for the evaluation of a
probability distribution X" with variates x. We shall see later how &’ is
related to the risk aversion parameter ¢ characterizing the current choice
among end-of-period wealth distributions.

Unfortunately the information contained in (27) is not sufficient to
determine ¥(.) and u(.) since it merely indicates the over-all concavity of
the preference functional, that is, a sum effect of both functions. Thus,
additional information on ¥(.) or u(.) is needed. For u«(.), it seems that
such information can be obtained from the psvchophysical relativity
laws discussed in chapter III.

Suppose we carry out a number-matching experiment for the con-
sumption level of a single period, keeping all other consumption levels
constant. Suppose, further, that people evaluate this level of consump-
tion independently of the levels in other periods, as was suggested by the
intertemporal separability of the additive preference functional (20).
Then it seems likely that a strict proportionality between the money
value of period consumption and the numbers that people choose to
signify its magnitude can be found. Assume this in the case or assume
there is, in general, at least a relationship between the number and the
consumption continua that can be described by a power function. Then
period consumption belongs to the large family of Stevens’s continua
that include stimuli like loudness, brightness, length, weight, area, and
numbers and that have been shown, in hundreds of cross-modality expe-
riments, to be related to one another by power functions. Now, the
interval experiments reported in chapter III A 1.3.4 clearly indicated
that, for a/f Stevens’s continua, equal relative changes in the objective
intensity of a stimulus bring about equal absolute changes in the subjec-
tive intensity of its sensation or, in other words, that for a// continua
there are logarithmic sensation functions. This suggests that, if we wish
to formulate a simple hypothesis regarding the shape of the period
utility function, we should assume that this function is logarithmic. The
hypothesis is taken up in the following axiom.



B Sequential Risks 239

Strong Relatively Axiom: Equal relative changes in period consump-
tion bring about equal absolute changes in period utility.

'I'he preference functional for deterministic planning problems there-
fore is

r—1
Z= Y Mla+blnc)+ Ap(a+blnvy)
=1l

or, with some normalizations that can be carried out without any loss of
generality '8,

T-1 =1
(28) 2= Y AInci+Aslney, X 4=
r=10 =0

It is confirming to note that MobiGLiant and BRuMBERG (1955, p. 396,
fn. 15) considered a preference function of this type, referring explicitly
to the results of psychophysics '?,

It is not difficult to find the specific risk preference function ¥(.)
compatible with the two pieces of information given in (27) and (28).
Obviously we have?

o {I—E'}E{"E"{ Erqﬁlr
(29) W)= { > sy

Accordingly, the possible versions of the multiperiod preference
functional R(Cy, ..., Cr_y, V1), that we have been looking for, are

(30) R()=E{(1—¢e"ye! —eNELG 4G+ dyln vyl

;o | .
=E {{1 g Tl el = ”T}, if &'#1,
r=0

=1
(1) R{.}=E(EA,1nC,+AT1n VT), if g'=1.
=0

The result shows that, for decision problems under uncertainty, the
additive preference functional is only maintained in the case ¢’'=1. In all

1% The normalizations do not affect the classes of possible preference funcrionals given
by equations (30) and (31).

1% The formulation also corresponds to Hewson’s (1947 and 1964) formula for the
adaptation level. See equation (11 A 29).

W, equations (111 A 38) and (111 A 39),
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other cases there is insiead a multiplicative preference functional, for
e<1 in a Cobb-Douglas version. Some of the implications of such a
type of preference functional have been drawn out by PyE (1972) for the
special case 4,=4, t=0,...,T, 0<A<1., Pye, however, did not try to
give a legitimation of the preference functional, let alone a legitimation
that resembles the one provided here. He merely made a favorable
assessment of its behavioral implications., We shall see what these
implications are, although without confining our attention to the case
A=At FL.

2.2. The Recursive Solution

Utilizing the preference functionals (30) and (31) and assuming
stochastic constant returns to scale, including auxiliary conditions, we
are now going to solve the problem

(32) max R(Cy, ... Cr_ 1, V1) | b
At each point in time ¢, the decision maker has control over the standard
risk project Q, ., ;, whose outcome is revealed one period later, and over
the consumption-wealth ratio ¢, =¢,/v,. The variable v, denotes wealth
available at point in time ¢, before consumption for the subsequent
period is subtracted. Wealth available for investment in the standard
risk project is a,=v,(1 — e,). As usual, we write random variables with
capital letters and denote non-random variables, i.e., those variables
known by the decision maker, by lower-case letters®'.

If we again formulate a minimization problem in the case £’'>1 then,
according to Bellman's Principle of Optimality?*, at each point in time
t* 0=<t*=<T-1, the problem

= ; i ) f
{ﬁ?:}ﬁ\[r]‘-}{‘c.}l_s}j“yﬁfl_lHr]]UH’ [f [z;ii} i
(33) -

=1
max E[ Y 4InC+ArnV4|,, i &'=1,

[=it

has to be solved. Expression (33) characterizes the optimal consump-
tion-investment policy as seen from the initial point in time 0 in such a
way that, at every subsequent point in time, on the basis of the currently
available wealth a policy is chosen which is optimal at that point in time.
This rule will allow the properties of the optimal plan to be discovered.

2l Indices and parameters are excepled.
22 Cf. expression (12) above.
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Point in Time 1*=T-1

First, consider the last situation that obtains before the end of the
planning period. With a historically given level of wealth v,, whatever
this level happens to be, the problem is to satisfy the following postu-
late?® by a suitable simultaneous choice of the consumption-wealth ratio
oy and the standard risk project Q7:

max =" | i . |

{min] E(cy_{ "1 ¥} L
=Zr 1.

max E{AT_ i lﬂ["_r_ 1 +:1]rll'l VT'} |”T—i -
=2r-1-

(34)

Because of Vy=(1l —ar_ IJQT“T— jand ¢ =g@r-1br_1s this postu-
late can be converted to the following expression, which can immedia-
tely be simplified by transferring constants forward:

max ;
o [ : ]E[({IT— )
i (1= ar_)Qruy_ ) ~£M7]

B T
min i e R Al
(1 =o'~ W E(Qf 7)),
Zry=maxE[Ar_In(er_vr_ )+ A7n((1 —or_)vr_ Q)]
=(Ar_ | +Ap)nuy_,
+max[Ar_Inar_+ A In(l —ar_ )+ A-E(In Q).

(35)

It is worth noting that here, as in the pure accumulation approach, the
optimization problem can be solved independently of the size of the
available wealth v, and hence independently of the previously
realized outcome gr_, of the standard risk project Q7. The reason is
that, behind the max/min operators in the second lines of each of the
equations, expressions with vy_; do not appear and the opportunity set
for Q7, by assumption, is not disturbed by autocorrelation. We do not
attempt to find the solution for an optimal policy at this stage. At the
moment, it is sufficient to state that, independently of the particular
variate vy_,, there are well-determined optimal values for ay_; and
E(QY 1) or E(InQy), respectively.

21 A5 in the pure accumulation approach, the formula above the horizontal line refers
toe' 21, the one below 1o &' =1,
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Point in Time t*=T-2
The decision maker’s task now is

max =M 5l — W I—g:
{min}{ﬁifr-z a el G e ] R

=E[(vr_zar_s)!' %12
(Vr_2Q@r_ (1 —ar_z)ay_ ) %11
(07 2Qr 1 Qr(1 —ar )1 —ar ) *"7]}
=Zr-2-
max {E(Ar slncy o+ Ay InCr_ +A7InV7) |, |
=E[Ar_2In(vr_207_7)
+ A7 In(ur_;Qr_ (1 —ay_s)ar_,)
+ArIn(uy 2 Qr 1 Q7(1 —ar )1 —ar )]}
=ir-2.

(36)

Transferring constants to the front and putting equal factors together,
we have:

max [ —6)A4 Lo
{min} [ =11 —ap_ Y s
a%!_—fu;r E(J_QT_EJH—E’}MT ()

FQYr-1 gl
Zr-3=(Ar_s+ir +4dp)inby 2
+ max [flr_r_ |IﬂﬂT_ 7% ATIHU =iy 1}
+Ar_alnar 2+ (Ar_ +A7)In(l — ar_3)
+E((A7— 1+ Ap)InQ7_ + Ay InQp)].
Because of the assumption that Qy , and Qp as well as any given

functions of these random variables, are stochastically independent,
(37) can also be expressed in the following way':

4r-2

(37)

T a=lr x Mr_atdr_ T

max g '
[min} [ﬂ'gr! i“jfr,;“ — ay 1}!1 £V
E(QY ~*"n
oy 5 PT-H —
E{Q%—I —II.:'}U.T |+ ﬁ.;r]}].
Zroa=(Ar_a+Ar_ 1 +Apnvyr_,
max[i;_Ina;_ +A.In(l — oy )
+ A+ E(InQr)
+Ar_alnar_r+(Ar_ +A7)in(l —ar_1)
+(Ar_ + AP E(INQy_ )]

Qy_ )1 —E W +ig)

(38)

2 Cf. footnote 4 in section A
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(Note that, in the case £'=1, the step from (37) to (38) is possible even
for stochastically correlated risks.)

The expressions in the second and third lines of (38) are known from
the expressions following the max/min operators in (35). According to
the Bellmann Principle of Optimality, we may therefore transform (38)
into

{I—rliﬂ 2+ 4 +45)
Zr_a=br_3 ¥ i A

{Tn?ﬂ [ F 711 — @ -2 ME(QY 5 T))

[max [ {I—LHT 1“_&.?_ I:,[I - & WAy yHAy)

min
BlOF =" Mr-iriny),
Zr 2=Wr 2+Ar (+Ar)inur
+max[Ar_Inay_+A+In(l —ay_ ) + A:E(In Q)]
+ max [Ar_zlﬂﬂj'_z-i'{i;r_ 1+ i;r)[ﬂ(l — @r_3)
+ (A H AP E(NQr )]

(39)

Point in Time t*=T—1
Proceeding in the manner described, we reach the conclusion that the

maximized/minimized goal functions generally assume the following
form

i

min
(1 - nz, sl
) E(Q )

r

Zr_.= Y, Adnvp o+ E max[j. Ina, + E AIn(l —a,)

=T-1 r=f&

+ ¥ AEIQ ).

I=i+1

Obviously, within (40), the expressions in the second lines have to be
maximized/minimized, whatever value the consumption-wealth ratio a;
takes on. Thus we have

o 1 gl T
TR Al | et 17 S § S S e LT

E©O" L 14)].
(41)

-

= ) Alnu;_,+ E max [4,nea, + E A n(l — e, )

=7 1=T-1 i=re

E AymaxE(InQ,, )].

=41
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The last step is to put the expressions in the second lines in front of
the first max/min operators, since these expressions are constants with
respect to the optimization of the consumption-wealth ratio:

-1
max (1-6)E A;
Tr_,=p !r :JE; y H [[ : } (Q: EVE e N
T

7. L min

[max}{ (1-eMy(] — g Y-85 ”"1']]

min

(42)

Zr = E Adnor_ + E [ Z AmaxE(nQy)

it=T—7 i=i41]

+max(A, Ine, + E An(1 —a,))].

f=¢+1

In what follows, these formulas will be interpreted with respect to their

implications for the optimal behavioral strategy under multiperiod
uncertainty,

2.3. Interpretation of the Solution

2.3.1. The Rehabilitation of the One-Period Approach

For the optimal decision at point in time ¢, where {=7-1=0, and
hence for the optimal decision at the beginning of the planning problem
also, (42) brings about two significant results. The first is that the
optimal standard risk project has to be chosen according to one of the
following rules:

43 ~ &) EQ!) 7% - m"d] » [ﬂcs‘:&t}
(43) max[ EnOy. ) ;i PR

The sec:nnd consists of a formula for the optimal consumption-wealth
ratio ;% that is, for the decision maker’s propensity to consume out of
wealth:

(44) a'=————, 2’50

A

This formula follows by differentiating (42) with respect to & and setting,
the derivative equal to zero.

In a way similar to the pure accumulation approach, (43) confirms the
role of the Weber functions (111 A 34) for a separate, isolated evaluation
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of the standard risk projects of each period. In the case of a power
function, the exponent now takes on a time-dependent value but what
matters is that it is constant at a given point in time. A new element is
the propensity to consume out of wealth. With (44) we have a formula
which shows that this propensity depends only on the time path of the
weight factor A,; the propensity to consume is therefore determined by
the decision maker’s time preference, but not by his risk preference.

The results (43) and (44) give very simple behavioral rules for multi-
period planning. The most important aspect scems to be that the deci-
sion maker does not have to take into account the future investment
opportunities either in choosing the current rate of consumption or in
determining the optimal current risk project. Thus the level of informa-
tion that is necessary for solving the intertemporal optimization
problem is surprisingly low. All that the decision maker needs to know
about the future are his own preferences. Anyone who up to now had
the impression that the intertemporal optimization approach overburde-
ned the decision maker, will be relieved to find that this is not so.

Another, more subtle, aspect is that the current decisions on the opti-
mal rate of consumption and the optimal risk project are separable from
each other. The decision maker can therefore proceed in two steps.
First, independently of the available set of standard risk projects, he
determines his optimal level of consumption and hence the level of
wealth a,=uv,—c, available for investment. Then, given the optimal
value of @, and the corresponding set of end-of-period wealth distribu-
tions V=a,0, , a choice is made according to the rule max E[U(}V)]
where U(.) is one of the Weber functions.

A priori, the separability of the two choice problems could not have
been expected. On the contrary, it would have seemed plausible for the
profitability of the best available project to influence the amount of
wealth a, maintained for reinvestment. The reason this conjecture is
wrong is provided by the Strong Relativity Axiom. This axiom requires
a logarithmic period utility function which, as is easily understandable,
implies that the elasticity of substitution between the consumption levels
at two points in time is unity, For such a value, the income and substitu-
tion effects of a change in a particular variate g of the standard risk
project Q just offset each other. Thus the decision maker does not care
whether he knows this change or the change in a whole probability dis-
tribution of such variates. In any case, he chooses the same level of con-
sumption 326,

M Maossin (1969 and 1973, pp. 29-32) demonstrates that generally the choices of con-
sumipiion and risk are intertwined ina ditficult manner. Our result shows that we do not
dlwavs have to 'cross our Ningers®, as he sugpests, and proceed by neglecting the consump-

-
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The behavioral rules developed from the multiperiod approach imply
a very surprising rehabilitation of the simple decision theoretic
approach used in the previous chapters. It now turns out that we were
indeed justified in abstracting from both the consumption decision and
the time aspect of the decision problem?’.

The rehabilitation, however, goes even further. For the reason that
was discussed above in connection with the pure accumulation approach,
the Broos rule again enables us to evaluate even gross distributions that
partly extend over the negative half of the wealth axis. The correspon-
ding derived preference structure is the same as in the one-period case.
Thus, for example, the kinked utility curve and the corresponding
indifference-curve system in the (i, @) diagram that were derived in
chapter 111 maintain their validity.

The rehabilitation of the one-period approach is certainly the most
important outcome of the multiperiod approach, but it is not the only
one. In the next two sections it will be shown how the passage of time
affects the optimal decisions. This information, of course, could not be
revealed by the one-period approach.

2.3.2. Time and Risk Aversion
The crucial change that (42) brings about, compared to the one-

tion decision. It is true that, despite Fechner's law, the terrors Mossin points out will persis
in the case of pure ‘income risks' that do not depend on wealth. In the preseni specifica-
tion, however, where income is generated through wealth, they vanish. Let, in line with
Mossin's 1973 terminology, Y>=(¥;— ¢ )2 - 1) denote the stochastic income at point in
time 2 where Y is the initial wealth, ¢; consumption in the first period, and () the standard
risk project. Then Mossin’'s formula max E[u(c,, ¥ —¢y)}), where Y=Y, + ¥sand (. ) is a
two-dimensional von Neumann-Morgenstern function, becomes maxE {ulc), ¥+
(Y- O =1D—a ]} =max &£ {u|c,, (Y — )]}, Concerning this expression, the
analysis in the text gives the result

max E{ Ei![{l’.‘|,“'"| — C‘;}QH -—ITI&KE{U[{Y| = {rjgll

where ¢y is the optimal level of consumption at point in time 1 that can be determined
independently of the risk problem. By using a utility function v(.) {Mossin’s terminology)
defined such that v(x + ¢; )= Ulx) the optimization problem therefore can also be expressed
as

max E{u[(¥1—c)Q+ cfl} =max E[u(Y)]

which is what Mossin would have liked to find, Cf, also SpencE and ZECKHAUSER (1972).

26 The result does not necessarily imply that consumption does not depend on a change
in the non-random market rate of interest. In fact, METZLER's (1951) wealth effect is clear-
ly present, For example, a rise in the non-random market rate of interest lowers the valuc
of the decision maker's human capital as well as the capitalized value of other income
streams and hence will reduce current consumption, This implication fits recent empirical
resulls on the interesl dependence of consumption. See Boskin (1978},

27 1t should be noted that this statement is contingent upon the assumplion of stochastiv
constant returns to scale.
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Figure 3

period approach, is the time dependence of risk aversion. Let &
denote the measure of relative risk aversion® relevant for choosing at
point in time r among risk projects @, . Then (43) implies for both the
cases £'=1and g'+#1:

#
(45) g1=1-(1-¢") Y A

i=r+1

The sum on the right-hand side of this equation diminishes over time as
long as A;>0. Thus, with the passage of time, the current level of risk
aversion approaches, either from above or below, the value of unity or
maintains this value if it initially prevailed®®. Figure 3 illustrates the
possible time paths of risk aversion for the example A;=A*= const.
Vi<T. Because of ¥/ o4;=1, in this example we have A*=1/(T'+1),
and (45) becomes

T—i+1
46 E:l_ l_ "‘—j
(46) =l = ey

an expression that indicates a linear time path for the risk-aversion
measure &.

M See equation (111 A 33).
¥ 1t 15 even possible that initial risk loving (£<0) changes to risk aversion with the
passage of time.



248 Multiple Risks IV

The paths in Figure 3 between points in time (0 and 1 are broken to
indicate that point 1 is the first point in time where the outcome of a
probability distribution is revealed. Despite this, it may be asked which
degree of risk aversion would be appropriate if, at point in time zero, a
choice between risk projects with immediate pay-offs were offered.
Noting that E,-r._n A, =1, we find from (45) that &,=¢’. This brings us
back to the original interpretation of &"in (27). There, &’ was assumed to
indicate the evaluation of standardized consumption paths that differ
only with respect to their levels x. Here, we find that obviously the
initial level of wealth can be identified with the parameter x. This is
plausible, but not self-evident, for, while we assumed in (27) that
doubling x implies a doubling of consumption at each point in time,
nothing similar to this was assumed in the solution of the multiperiod
optimization problem. Instead, the fact that in (44) the optimal
consumption-wealth ratios are independent of wealth legitimates the
previous assumption. Whatever the random variates of the standard
risk projects, if the initial level of wealth is doubled, consumption at
each point in time is twice as high as it otherwise would have been.

Figure 3 suggests that a path that deviates anywhere from the value of
unity does so everywhere. This is a general rule to which there are no
exceptions. Since g, falls if it is larger than one and rises if it is smaller
then one, it is possible to draw conclusions concerning the size of risk
aversion [rom its change, this being easier to see than its size. With the
model of optimal life-cycle planning in mind, the case of risk aversion
increasing with age seems particularly realistic. Hence we must conclude
that the Weber function U(v)=uv'"%, £<1, defines the standard type.

This result restates a conclusion that was reached on different
grounds in chapter 11l B. It was shown there that the neglect of large
liability risks, which can often be observed in reality, can be explained
by the Broos rule if, and only if, the utility function for net wealth is
bounded from below. The latter implies that only the Weber function
with £<1 is relevant.

For the sake of illustration, Figure 3 refers to linear time paths of the
risk aversion measure £. The property of linearity is not a general one
but will only prevail if there is no time preference in the sense of von
Bohm-Bawerk’s second reason. How the appearance of time preference
affects the time paths of & can easily be shown. Generally, an increase
in time preference occurs if, for all t=1,...,7, the ratio (¥ ,4)/
(Y o4;) is getting smaller which, because of v I ,4i=1, means that
Y. ,A;=1 is falling. In connection with (45), this implies that an
increase in the rate of time preference makes &=1~(1-¢)¥/ 4,
approach the value of unity for all 1=1 if, with &;=¢', the origin of the
path is maintained. Thus the following conclusions appear. Of two
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people, who have the same degree of risk aversion when they are young,
the one with the higher rate of time preference will be nearer to the inter-
mediate value £=1 when he is old and of two people, who exhibit the
same degree of risk aversion in old age, the one with the higher rate of
time preference had the greater tendency toward the extremes when he
was young.

The reader may be tempted to doubt the time dependence of risk aver-
sion when thinking of the phenomenon of ‘rolling planning’ observable
in reality. Indeed, if, with the passage of time, the planning horizon is
shifted ahead and, period by period, a new optimization problem rela-
ting to the corresponding new horizon is solved then risk aversion will
be time-invariant*’, In general, however, such a procedure is irrational,
for it means optimizing the current decision on the assumption of a
future behavioral strategy that, when the future arrives, is not actually
carried out. A shift in the planning horizon is only innocuous if, for
whatever reason, it does not affect the actual decision. Presumably this
is the case when rolling planning is used in practice, for otherwise it
would be hard to understand why a firm chooses, for example, to make
rolling five-year plans if rolling six-year plans imply significant diffe-
rences in current behavior.

Compared to other models of intertemporal planning under uncer-
tainty, the present approach incorporates an unusual influence of time
and time preference on risk aversion. This influence certainly deserves
some explanation.

At the beginning of his related article, SamMUELsON (1969) conjectured
that risk aversion for the young might be smaller than for the old, since
the young man may be able to recoup his losses. He was surprised when
he found that, on the contrary, his own approach implied a time-
invariance of risk aversion. At first glance, it is tempting to interpret our
findings as confirming Samuelson’s conjecture. In fact, however, this
would not provide us with the true explanation of the time dependence
of risk aversion. Contrary to the idea behind Samuelson’s conjecture,
decisions in youth do, in fact, have enormous implications for the
future for they ‘switch the points’ and so influence the direction of later
life. If, through a change in an initial decision, wealth changes by x%
then, because of the ratio structure of preferences in connection with
stochastic constant returns to scale, consumption in each future period
also changes by x%. There is no change of recouping. The true explana-
tion for the time dependence of risk aversion is different.

The preference functional derived above has the property that a
specific risk preference function ¥(.) is applied in order to evaluate dis-

W For arguments in favor of rolling plans see ROSENSTEIN-Ropan (1934, pp. 78-84).
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persions of life-time utility X This seems to be the clue to undersianding
what 15 going on in the model. A young man’s decision alters consump-
tion in a large number of future vears and hence may significantly affect
the dispersion of Z. Risk aversion or risk loving on the subjective conti-
nuum (X}, i.e., the concavity or convexity of ¥(.) will have large effects
on a young man’s evaluation of probability distributions. A young
man'’s relative risk aversion parameter £ may hence substantially deviate
from the value of unity that would prevail if ¥(.) were linear. An old
man’s decision, on the other hand, can only affect comparatively fewer
years and thus will not alter the dispersion of X to any great extent. The
curvature of ¥(.) is not very important in his decision making; the old
man may decide roughly according to the mean-value criterion on the
subjective continuum. This mean-value criterion is max £(InQ,) and
explains why the old man tends towards a risk aversion of e= 1.

In the light of this interpretation, the role of time preference
described above also becomes clear. A higher rate of time preference
means that the weight of the later years is reduced in comparison to the
earlier years. Hence, for an even stronger reason, the old man’s
decisions bring about comparatively smaller changes in dispersions of
than the young man’s decisions do. The obvious consequence is that the
time change in the degree of relative risk aversion is reinforced.

2.3.3. The Optimal Consumption Strategy

We now study the properties of the optimal consumption strategy (or
in the model of the firm: the optimal dividend policy) as implied by (44).
It 1s immediately apparent from this equation that the propensity to
consume oul of wealth at the decision point f 1s lower the more weight 15
attached to future consumption (¥ ,T___H 1 A;) compared to present con-
sumption (4,). There are, however, a number of further implications of
(44) that are worth investigating.

Suppose first that A=A*=const. ¥r. Then (44) becomes

1
ill— —

(47) o, ¢
This is a very simple rule for the intertemporal choice of consumption.
At each point in time ¢, the then available wealth is divided up equally
into one part for consumption in the current period and T — f (putative)
other parts. Of these, T—1r— | provide for later consumption and one
provides for final wealth, The rule, of course, implies that the propen-
sity to consume out of wealth is rising over time.

Next, consider a slightly more complicated, but also more realistic,
case. It is assumed that the weight factors in (44) take on the form
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d=ro. # el . (1+d)

i A=K, If sz:] g‘:T' | ko
_|_

—o(l+d)Y (1+d)
d=>0, k>0.

With this assumption, a constant rate of time preference is postulated,
but with the weight factor x final wealth can be excluded from the dis-
counting rule., From (44) and (48) the following expression for an opti-
mal consumption strategy can be calculated:

Skl [l+d_x .
d (L™= d

(49) o=

According to this expression, a passage of time ¢ will only imply a rise in
o if x<(1+d)/d. In the case x> (1 +d)/d the converse is true. With
the passage of time, the propensity to consume out of wealth is falling,
since a relative decline in the discount factor applied to final wealth
makes saving more and more urgent.

Whatever the size of x, the influence of this parameter is not signifi-
cant if the time horizon is still in the far distance. In the limiting case of
an infinite horizon we have

o
SO

Roughly speaking, for small d, the propensity to consume eguals the
rate of time preference,

To conclude the discussion, an interesting relationship between the
consumption strategy and the degree of risk aversion should be mentio-
ned. From (45) it is possible to calculate the expression

U-&ny)—(O—-g) I :
(1—&,) . )T: 1
P R

)
Comparing it with (44), we find

(—g,))-0-¢&)
| =&, :

(51) o =
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Hence the propensity to consume coincides with the ‘shrinking rate’ of
the difference between the current level of risk aversion & and the value
of unity. The more thrifty the decision maker is, thc morc slowly his
degree of relative risk aversion approaches the value that characterizes a
logarithmic utility function. This rule is independent of any particular
aspects of the time path of the weight factors A, and thus should open
our preference hypothesis to empirical scrutiny.

2.4. Result: The Surprising Simplicity of Multiperiod Planning

The discussion in section B 2, which is about to be concluded, started
from a criticism of the multiperiod preference functional normally used
in the literature, which is constructed by simply putting the expectation
operator in front of the additive preference functional developed by
Ramsey, Samuelson, and Koopmans. It was shown that this procedure
links risk aversion and intertemporal substitutability of consumption in
a very special and arbitrary way and that some simple rationality axioms
require the introduction of a specific risk preference function. The
specific risk preference function models the decision maker’s degree of
risk aversion without at the same time affecting his behavior in a world
of certainty.

The preference functional thus founded was then specified by using
Weber's law and Fechner’s law. It turned out that these laws allow for
two possibilities: an additive logarithmic functional and a multiplicative
power functional that, in the case of a relative risk aversion smaller than
unity, takes on a Cobb-Douglas form.

Under the condition of stochastic constant returns to scale, these
functionals imply very simple rules for current behavior compatible
with intertemporal optimization. On the one hand, the decision maker
does not need any particular information about the risk projects avail-
able in the future®'. On the other, the decisions about the optimal level
of consumption and the optimal risk project can be found independent-
ly of one another.

Since, in the evaluation of risk projects, one of the Weber functions
has to be consulted and since, moreover, the BLoos rule can be applied
in the usual way, the previously developed one-period approach is near-

3l However, he has to know the basic assumptions of the model, namely, that stochastic
constani returns to scale prevail and that there is no autocorrelation among the nsk
projects.
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ly*? perfectly rehabilitated. In particular, the shapes of the indifference
curves in the (u, o) diagram that were derived in chapter 111 retain their
validity. Savage’s precept *You ecan cross the bridge when you come to
it’, that was cited in the introduction to section B, therefore met the
point fairly well.

Apart from a rehabilitation of the one-period approach, the class of
preference functionals derived above has a number of further implica-
tions that are worth noting. The most important one is that, with the
passage of time, the degree of relative risk aversion relevant for current
decision making approaches the value of unity whatever its initial value,
This suggests the interesting conclusion that people, who get more risk
averse as they grow older, have a comparatively low level of risk aver-
sion which is less than that implied by a logarithmic utility function. At
each point in time these people’s behavior is determined by one of the
Weber functions that are bounded from below and hence exhibit a
property that, in connection with the Broos rule and the demand for
liability insurance, was seen to be desirable in explaining observable
behavior. A further implication is that the size of the propensity to con-
sume out of wealth and the time change in the degree of risk aversion
depend on the decision maker’s time preference in exactly the same way.
The propensity to consume just equals the rate at which the current
degree of risk aversion approaches the degree characterizing a logarith-
mic utility function.

The highly surprising rehabilitation of the simplest risk-theoretic
approach deserves some explanation. The explanation i1s nef primarily
that an attempt was made to find assumptions that bring about simple
solutions. A simplifying assumption that is not immediately plausible,
although, at the same time, it is not very restrictive either, i1s that of
intertemporal séparability. As Koopmans showed, this assumption
implies, in connection with other plausible assumptions, an additive
multiperiod preference functional for deterministic planning problems.
But, apart from that, the results were derived by a straight-forward line
of reasoning, primarily from cogent rationality postulates and the laws
of psychophysics. The latter provide the true explanation of the simpli-
city ol multiperiod planning.

Remember: according to Weber’s law equal relative intensities ol a
stimulus are perceived as equally significant. The explanation for this

3 An exception is that, in the case of strong (&= 1) risk aversion, no comparison can be
made between distributions that, with a probability greater than zero, bring about gross
wealth levels equal to or less than zero. This does not appear to be a severe constraint,
sinee these distributions are, in any case, suboptimal if at lcast one distribution 15 available
that puaraniees survival with cerlainty,
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phenomenon seemed to be that, in his evolutionary development, man
has adapted to the ratio language in which environmental signals are
encoded. The parallel with our results seems obvious. With the assump-
tion of stochastic constant returns to scale, we made homo oeconomicus
act in a world in which the relevant information again is formulated in a
ratio language. Is it then surprising that he succeeds in finding his way
according to simple rules in this world, too?



