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Chapter Five
Areas of Application

The theory of decision making under uncertainty developed above
has a large number of possible applications. Here we consider in more
detail three of them only: optimal portfolio management, currency
speculation, and insurance demand. These areas of interest seem to be
good examples of problems that are difficult to handle with non-
stochastic theories.

Section A
Portfolio Theory

Judging by the number of articles and books that were written after
the fundamental studies of MarkowiTz (1952a, 1970) and Tosin (1958),
portfolio theory 1s nowadays the most important field in risk theory. It
therefore seems well worth-while investigating whether the portfolio
theory can be integrated into our multiperiod model and, if so, which
behavioral implications can be derived for the portfolio holder.

1. The Decision Problem

The aim of portfolio theory is to find rules by which an amount of
capital @ available for investment should be distributed among different
assets. Such assets are, for example, company shares and bonds. As
shares bring in uncertain dividend payments and are subject to the risk
of price fluctuations, the determination of the optimal portfolio struc-
ture is @ problem of risk theory.

In line with our basic model, it is assumed that decisions are made
period by period. At the point in time when a decision is made, the level
of wealth available after period consumption has been subtracted is
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invested in the best possible way. The portfolio structure is then main-
tained for a period and, at the end of that period, a decision is made, on
the basis of the then available capital, about how much to consume in
the next period and how to invest the remaining capital. This process is
continued in subsequent periods until the planning horizon is reached.,
In the absence of transactions costs, it is useful to imagine that the total
portfolio is sold at the end of each period so that the total wealth accu-
mulated is available for reinvestment and consumption,

The approach just described does not need assumptions concerning
the length of the periods. It is therefore suitable for representing the
decision problem of the speculator who is frequently revising his port-
folio as well as for the small saver who only bothers about his shares
every few years.

For a further specification of the approach it is assumed that there are
one safe and n risk-bearing assets. A unit of money invested in the safe
assct contributes to end-of-period wealth the amount Q°=g* and a unit
ol money invested in the jth risk-bearing asset contributes the amount
Q,. Thus the variables ¢* and Q] are effective return factors generally
defined as

) q*“] _ final price + dividend (or interest) :

o/ initial price Sl tndh

Let the proportion of capital safely invested be o', let the proportion
invested in all the risk-bearing assets be e’ =1—a*, and let the propor-
tion of the jth risky asset in the total amount invested in risky assets be
o, Y7.ie/=1. Then the standard risk project utilized in the multi-
period approach that was studied in chapter IV B is'

(2) Q=a'q"+a’ _EI a Of
=

and according to equation (IV B 2) end-of-period wealth V is

(3) V=ala'q*+a" ) af Qf].
J=1

The proportions &', @, and @* must be positive. Since wealth is
defined so as to include human capital, &*=0 means that it is possible
for the decision maker to raise money on his human ca pital and to invest
it in risk-bearing assets.

! Indices of time are omitted. It is assumed that g refers to the beginning and ¥, ¢*, and
(7 ¥ belong 1o the end of the current period.



A Portfolio Theory 257

In order to integrate the portfolio model into the multiperiod optimi-
zation approach studied in chapter 1V, some of the assumptions under-
lying that approach havc to be considered?®. With (2) and (3), the basic
assumption of stochastic constant returns to scale clearly is satisfied.
Another assumption is that the opportunity set contains at least one
alternative that, with certainty, brings about strictly positive wealth.
Since

(4) q°>0
and since the assets are typically of the limited-liability variety?,
(5) =0, J=Lian,

the set of all those portfolios, for which >0, brings about
O > gmin > 0. Hence this second assumption is clearly satisfied. A further
assumption is that the standard risk projects at two different points in
time are stochastically independent. Whether this condition is satisfied
primarily depends on whether stock prices perform random walks where
the relative changes in prices up to the end of the current period are
independent of the levels of prices at the beginning of the period. At
least as an idealization, this independence assumption should be justi-
fiable in the light of the fact that, as a rule, the undesired autocorre-
lation in the share price movement can be removed simply by increasing
the length of the periods?.

Thus the portfolio problem has been integrated into the basic
approach developed previously. The task of the decision maker, there-
fore, is to determine the portfolio structure so that it satisfies the aim

in

(6) max {E[Ua(@q*+a’ ¥ a/OD)}.

F oo le 2
fete"al,..oap J=

2 Assumptions (2) and (3) that were made at the beginning of chapter IV B are assumed
1o hold.

1 An exception is, for example, the so-called *Kux’ issued by mining companies in
Germany. Although the case Q =0 is covered, in principle, by our basic approach, for the
sake of brevity it is not discussed here.

4 For German share prices Conpap and JOTTNER (1973) found an autocorrelation in
asset price changes, though in absolute ones. Ronming (1974a,b) succeeded in demonstra-
ting that the extiremely short period (one day) chosen by these authors was responsable for
the result. The finding of Conrad and Jittner is not compatible with similar American
studies either, as the authors themselves concede. See the review article by Fama (1965).
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Here U(.) is one of the Weber functions specified by the time-dependent
measure of relative risk aversion &.

In principle, UJ{.) may also represent the preference structure for gross
distributions of wealth as implied by the Broos rule. However, since
a® =0, the gross distributions coincide with their net counterparts in the
present problem and the BLoos rule is not operative®,

2. On the Applicability of the (u, o) Approach for Portfolio
Management

To investigate the implications of (6) it will be helpful to approach the
problem of optimizing expected utility indirectly by employing the (i, )
diagram as suggested by Markowitz and Tobin. Before doing this, how-
ever, some remarks concerning the applicability of the (u, o) approach,
that go beyond what has previously been said in this book, are appro-
priate®,

The (u, o) approach is perfectly suitable for portfolio analysis only if
all attainable distributions belong to the same linear class. The distribu-
tion classes ¥ or Q defined by (3) thus have to be invariant with respect
to changes in the portfolio structure as described by ¢, ', and a, ..., @,.
The only distribution class of the Q] ’s that satisfies this requirement and
that is characterized by a finite variance is, because of its reproduction
property’, the class of normal distributions. However, a normal distri-
bution for Q] is excluded by (5). Thus, obviously, a perfect precision
cannot be achieved. To draw from this difficulty the conclusion that the
(4, o) approach is not applicable at all to the portfolio problem would
nevertheless be a mistake. The (u, o) approach is able at any rate to
approximate the expected-utility approach.

First we may refer to the method of local approximation which, as
shown before?, is applicable if E(Q)/2=<Q <2E(Q). This condition can
easily be interpreted for the sake of portfolio analysis if it is written as

(7) He‘qg*+ (1 - a”)E(QN)] = e'q° +(1 — a*) Q'
= 2|[a’g* + (1 — a*)E(Q")]

¥ Without the constraint @=0, in the case of weak risk aversion (e<1) it could well

happen that in the optimum a*<0. If, however, &= 1 then, because of lim, -y U(v)= o,
it is never optimal Lo sel p5<0 if Qj may take on the variate zero with a strictly posinive
probability.

& Cf. chapter 1 A3, A6, and D2.2-D 2.4.
? Cf. fn. 7 in chapter 11 A.
% In chapter [1 D 2.2.2.
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where
{8} Qr = 'EI aj er-
_.r:

Because of (5) the first two terms in this inequality imply the condition

1

qﬁ
E(Q")

(9) @’ =

1+

Since, in practice, g° and E(Q") are rather close to one another,
condition (9) requires that around 50% at least of the capital must be
safely invested to ensure that the wealth distribution does not extend
below the lower boundary of the approximation range”. Consider now
the upper boundary of the approximation range. Since there 1s no clear-
cut upper boundary of @/, the second inequality in (7) might seem to be
more of a problem. To check this, transform this inequality to

(10) 0 < ——q"+2EQ).
£

a.!-'

Inserting the smallest admissible value fo @ compatible with (9) we find
that (10) reduces to

(11) Q"<3E(Q").

Provided that E(Q") is close to unity and provided that condition (9) is
met, this condition, roughly speaking, requires the decision maker to
believe that it is impossible for the value of his risk portfolio to more
than treble.

Apart from local approximation which is possible for arbitrary distri-
bution classes, in the case of portfolio analysis, the (i, ¢) principle can
be legitimated on yet another basis, one that was already mentioned in
chapter Il D 2.4. This is that the end-of-period wealth distributions
attainable by alternative portfolio structures approximately seem to
belong to the same linear class. Indeed, empirical data suggest that, with

Y0 the maximum capital loss considered possible by the decision maker is 50% rather
than 100% then, even in the case g+=10), the lower boundary of the approximation range is
noi binding.
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the class of normal distributions, such a class prevails. FisHer and Lorie
(1970) reported frequency distributions of returns for fictitious port-
folins of well-known assets. Comparing these distributions with the
normal distribution, Mossin (1973, pp. 60-62) found a high degree of
coincidence. The degree of approximation was higher the larger the
number of different assets in the portfolio. From a theoretical point of
view, this result is to be expected when the various assets bring about
returns that are stochastically independent of one another. According to
(3) and (8), end-of-period wealth V and the weighted return factor Q'
are sum variables to which the Central Limit Theorem is applicable'”. It
implies that

(12) g $af0l W=l oun
n—m =1

L
oy {1}

is normally distributed regardless of the distributions of the Q;’s provi-
ded that their variances exist. But of course, in reality, the independence
assumption can hardly be satisfied in a strict sense. It is therefore
remarkable that the normal distribution nevertheless turned out to be a
good approximation empirically.

Despite these encouraging aspects, some doubts remain. Whatever
the degree of similarity between the empirical distributions and the
normal distribution, these types of distribution differ from one another
definitely with respect to their left tails: empirical distributions are
bounded to the left where v=ae’, but the normal distribution is
unbounded. It is not obvious that this divergence is negligible, since the
concavity of the utility function implies that a given difference between
the two types of distribution affects expected utility more strongly when
it occurs at the left tails than when it occurs at the right. The bias in
expected utilities is stronger the higher the degree of risk aversion and
the higher the variances of the distributions. The assumption of a
normal distribution is completely misleading when relative risk aversion
(£) is equal to or above unity. Since, in this case, there is no lower bound
to the utility function, the normality assumption would imply lexico-
graphic pseudo indifference curves in the form of rays through the
origin even though it is impossible for gross wealth to become zero or
negative. On the other hand, in the analysis of the time dependence of
risk aversion and of the demand for liability insurance, the possibility
£<1 turned out to be the realistic one. This rescues the normality

10 Cf, footnote 22 in chapter 11 A.
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assumption from the implausible implication pointed out. Thus, after
all, the similarity between the empirical distributions of portfolio
returns and the normal distribution does suggest that the distributions
among which the portfolio holder has to choose can be idealized as
belonging to the same linear class.

For this reason and also because of the possibility of a distribution-
free local approximation, the (i, @) approach seems to be appropriate
for an analysis of practical portfolio problems. We therefore may
replace (6) by
(13) max U, a)

fe® atel .. an]

where the function U/, o) describes a system of convex indifference
curves, as was derived in III A 2.2, For the needed distribution para-
meters we calculate

(14) u=EV) = ala’qs +a ¥, o) EQ))]
I=1
= ale’g® + &"rE{Qr}],
(15) o=a(V)=aa’ ‘/ ir 5:. o] 0 0;;0(Q7 ) o ()
=aa’a(Q"),
where
cov(Q/, Q)
16 g e
(16) Y= 50 a(@)

is the coefficient of correlation between assets f and J.

3. Implications of an Optimal Portfolio Structure

3.1. The Advantage of Diversification

Suppose the decision maker is risk neutral so that U(.) is linear (e =0).
Then (6) and (13) can be written in the form "

max a[a'q’ + ), a'a; E(Q;)]
i

I'" This result depends on the institutional constraint @¥=0. If @%is unconstrained, i.e.,
if borrowing beyond the value of human capital is allowed, the BLoos rule appears on the
scene and 1t may very well turn out that a risk neutral investor behaves as if he were a risk
lover.
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and it turns out that the best strategy is to invest all capital in the asset
with the highest expected return factor E(Qj) or g° respectively. It
should not be necessary to stress, however, that both the assumption
and its implication are highly unrealistic. Therefore, the role of risk
aversion will now be checked.

For this purpose, it is useful to represent the opportunity set of end-
of-period wealth distributions, as described by (14) and (15), in a (u, @)
diagram. Suppose first that no capital is invested safely so that
a,=1—a,=0. A variation of the proportions &; may then bring about
an opportunity set '? like the one shown on the right in Figure 1. Choose
now the other extreme and set @*=1— a,=1; then the structure of risk
assets is, of course, irrelevant and we find a degenerated distribution
with E(V)=aq® and a(V) =0, which in the diagram is represented by
point P. Provided with this information, the opportunity set achievable
when o and af Vi are freely choosable can easily be found. Equations
(14) and (15) show that we need only form linear combinations of the
coordinates of the points in the opportunity set mentioned first and
those of point P. Figure 1 illustrates how, for example, A changes to 4",
Bto B, and Cto C".

Figure 1

12 It can be shown that, For n— o, the left-hand border of the opportunity set
approaches a hyperbola open to the right. See ROY (1952). For our purposes, the parti
cular shape of the opportunity set is irrelevant.
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In Figure 1 there is a line starting at point £ which is tangent to the
opportunity set prevailing when a*=0. This tangent characterizes the
efficiency frontier of the total opportunity set achievable when «® and
af Vj are variable. Since the points on the efficiency frontier differ from
one another with respect to the share a” of the ‘risk portfolio’ in the
total portfolio but not with respect to the structure of the risk portfolio,
the optimization process can be divided into two steps. First, indepen-
dently of the particular aspects of the portfolio holder’s preferences, the
optimal structure @, &, ..., &, of the risk portfolio is determined. Then,
with &* and «’, the division of funds between the safe asset and the risk
portfolio is determined. This is a well-known result of Tosin (1958) that
is usually referred to as the Separation Thearem.

For convex indifference curves exhibiting risk aversion, we now find
that the strategy of investing all funds in the asset with the highest
expected return is, in general, suboptimal. If risk aversion is sufficiently
large, i.e., if the indifference curves are sufficiently curved there will be
a tangency solution as illustrated by point T in Figure 1. It shows that
the safe asset is held although'® E(Q")>g®. The decision maker is
willing to pay a price for safety.

Figure 1 does not provide obvious information on the optimal struc-
ture of the risk portfolio. In order to achieve such information, it is
useful to formulate (13) as a Lagrange approach,

(17) P=Ul, a)+ M1 —a*— ¥, a'al),

and to differentiate with respect to the proportions of the various assets
in the portfolio:

3¢ AU au
8 == -
(18) da® du da* =9
o BU
(19) . B0 Gt REEL

= — - -
Na'a)) du MNa'ay) do dla’ar)

This vields the rule
al/
du _E do
da'ey) da® AU da'ap)
au

(20) Vk=1,...,n.

I3 It can be shown that, with risk averse investors, the capital markel eguilibrium is
such that E(Q7)>g¢* and that the point T characterizes the situation of the typical
mnveston
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Since
au
(21) s - A ,
da | iy, o) oU
du
equation (20) implies
(22) A —a“_:d“l B el g
da'a,) du* do|vywe daay)

This equation compares the additional ‘return’ of an increase in the
kth risk-bearing asset with its additional ‘cost’, If the share of the safe
asset is reduced by one percentage point in favor of the & th risk-bearing
asset, then expected end-of-period wealth rises by one percent times
du/da ay)—0u/da”; this is the ‘return’. The ‘cost’ of this portfolio
restructuring on the one hand depends on how the standard deviation is
affected by an increase in the portfolio share of the kth risk-bearing
asset, do/d(a” a; ), and, on the other, on the ‘price’ of an additional unit
of standard deviation, du/da |y, ;- This ‘price’ can be interpreted in
two ways. First, it indicates how much it is necessary for the expected
level of end-of-period wealth to increase in order to compensate for an
increase in risk. This interpretation, though correct, leads to the wrong
conjecture that the size of du/do | 1, - depends on the decision maker’s
personal preference. In fact, this is not the case. Instead, du/de | U 1)
equals the slope of the efficiency frontier'#, i.e., the maximum value of
[E(Q7)—g*1/a(Q"),to which it is adapted by a suitable variation of o
Thus, an interpretation in terms of opportunity costs seems preferable:
du/de | 1, - measures the increase in expected end-of-period wealth
brought about by a structure-maintaining widening of the total risk
portfolio that increases the standard deviation by one unit.

To find out what (22) implies for the size of ay, the single items are
explicitly calculated from (14) and (15):

d
23 —L =iy’
(23) P

4 The fact that this slope depends on the preference of all wealth owners does not
contradict the assumption that it is considered as given in the individual optimization
problem.
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(24) I — = aE(Q}),
ﬂ ﬂrﬂﬂ-)
a a n
(25) 9 __ 972 ;¥ arafoxa(Q5)o(Q)

da'af) olaa’Q")

E ol 04 0(0}) (O] + tf g Q)

= itk
a(Q’)
If these values are inserted into (22) the following expression results:
E(Q))—q° _ZI o] 0y 0(05) o(QF)
r a(Qx)  a(Q) iz
(26) = - PE=1,.xll.
© du a(Qf) a*(Qh)
do | Ut a)

Although it does not give an explicit solution for af, this expression
nevertheless can be meaningfully interpreted °.

If we set all coefficients of correlation with i#k equal to zero, the
second term on the right-hand side of the equation disappears, so that
only the first matters. Within this term, the first quotient relates a *price
of risk’ E(Qf — q*)/a(Q}), specific to asset k, to the average ‘price of
risk’ du/da |y, of the total portfolio. Assuming that, because of
du/do | 1, >0, risk assets are held at all and taking into account that,
by definition, a(Q")/a(Q;)>0 we find E(Q;—q")/o(Qr)>0 to be a
necessary and sufficient condition for a >0. This is the most important
result of Markowitzian portfolio theory. It implies that it is not only the
asset with the highest expected return that enters the risk portfolio. On
the contrary, all risky assets that promise a higher expected return than
the safe asset are included.

The result changes drastically if coefficients of correlation other than
zero are allowed. If the second term on the right-hand side of (26),
which measures the correlation between asset k& and the remaining
assets, is strictly positive, then the expected return factor E(Q;) must
exceed the return factor g* of the safe asset by a sufficient amount if
assel k is to be included in the portfolio. But if the kth asset has the rare
property of being negatively correlated with the rest of the portfolio,

15 Equation (26) does not give an explicit solution since a{Q*) and du/do | gy, - depend
on g,
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then, because it counteracts the other risks, this asset may be demanded
even if E(Q;)<g’. Thus we can conclude that, under fairly general
conditions, a well-diversified portfolio is held. Therefore here too,
putting all your eggs in one basket, which is wise under risk neutrality,
turns out to be suboptimal.

3.2. The Age Dependence of the Optimal Portfolio Structure

As we know, according to our preference hypothesis, with the passage
of time, the degree of relative risk aversion (£) relevant for current
decision making approaches the value of unity, provided the decision
maker’s propensity to consume out of wealth is strictly positive. The
implications of such a change in risk aversion on the optimal portfolio
structure can be illustrated in a comparative static analysis where a given
opportunity set of end-of-period wealth distributions is assumed.

Equations (IIT A 52) and (I11 A 53) show that on a given ray through
the origin the indifference-curve slope rises with &:

du
da | Uy, o) -0
de e

Thus, an increasc in risk aversion shifts the point of tangency between
an indifference curve and the opportunity set to the left and hence
induces a process of restructuring the portfolio towards the safe asset
and away from the risky assets. A decrease in risk aversion has the
opposite effect. In Figure 2 both cases are illustrated, account being
taken of the fact thai the direction of a change in risk aversion depends
on its absolute level. The point of tangency between the indifference
curve labelled £=1 and the efficiency frontier A4’ of the opportunity
set 1s a trough. If initially the point of tangency is below this then,
because of £> 1, with the passage of time it moves upward, and if it is
above, it moves downward. This is illustrated by arrows. Thus a person,
who, compared to point P, initially invests a high proportion of his
wealth in the risk-bearing assets, over time restructures his portfolio in
favor of the safe asset and a person, who starts of f with a high propor-
tion of the safe asset, increases his demand for risk-bearing assets as he
grows older.

A superficial interpretation of this result would be that a portfolio
owner who holds a proportion of the safe asset greater than this asset’s
share in the market portfolio will, with the passage of time, be inclined
to reduce this proportion. Such an interpretation, however, would only
be admissible if £=1 indicated a normal or average level of risk aver-
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sion. But there is no reason to suppose this. On the contrary, a relative
risk aversion increasing with time seems to be the normal case. Thus, the
capital market equilibrium will be such that the market portfolio occurs
al a point io the left of point F, that is, in the range where indifference
curves with £<1 are tangent to the efficiency frontier. Even investors
who demand a proportion ® of the safe asset that is below the share of
safe assets in the market portfolio may then tend to increase this propor-
tion as they grow older.

Figure 2

The age dependence of the optimal portfolio structure has important
implications for the capital-market equilibrium when the age structure
of wealth owners is changing. For example, an increase in the average
life span will increase the demand for safe assets relative to risky assets
and will therefore imply a relative fall in share prices to ensure that the
market portfolio is willingly held by the public.

This will not be without implications for productive decisions on the
part of firms. Firms maximizing the market value of their shares will try
to avoid this fall in share prices by engaging in less risky production
decisions. Unfortunately, however, this means accepting a reduction in
excepted profits since production possibilities that promise both a lower
risk and a higher or even the same level of expected return are not avail-
able. If they were available the firms would surely have chosen them
before the fall in share prices caused by the change in age structure.
Thus, a general decrease in labor and capital productivities seems un-
avoidable. The underlying cause is that, with a change in the age struc-
ture, households supply less of a factor of production. Despite its being
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neglected in recent economic theory, this factor seems to be of great
practical importance — we refer to the factor called ‘risk’ ",

3.3. The Wealth Independence of the Optimal Por(folio Structure

A peculiarity of the Weber functions, that we used continually in the
above multiperiod analysis'®, is the separation property detected by Pve
(1967):

(27) max E[U(aQ)] ~ max E[U(Q)] | ,.

It implies that the optimal standard risk project can be found indepen-
dently of the amount of capital invested. Given the wealth owner’s goal
as described by (6), this means that the optimal portfolio structure is
independent of his wealth. The result holds for arbitrary shapes of the
gross or balance sheet distributions of wealth. Neither the assumption
Q; =0 nor the conditions for an application of the (x4, ) approach are
needed.

If we are allowed to use the (u, o) approach, however, then the
separation property can easily be illustrated as in Figure 3. There, the
efficiency frontiers of two opportunity sets, brought about by two diffe-
rent levels ¢ and @', @’ > a, of capital invested, are plotted. Since in (14)
and (15) the level of capital appears as a factor of proportionality, one
efficiency frontier can be produced from the other by means of a projec-
tion through the origin. The indifference curves following from Weber’s
law can also be constructed in such a way. Thus the points of tangency P
and P’ have to lie on a ray through the origin that partitions the efficien-
cy frontiers in the proportion «":a’ so that the proportion of wealth
invested in the risk portfolio is independent of wealth. Of course, also
the structure of the risk portfolio itself is unchanged, for this structure is
in any case independent of personal preferences and would be main-
tained even if P and P’ were not situated on the same ray through the
origin.

The wealth independence of the portfolio structure is a very plausible
result. For want of something better, it provided Hicks (1967, p. 114)
with an incentive for postulating a homothetic indifference-curve
system. Nevertheless, it seems to be at variance with an obvious empiri-
cal fact that we now want to consider.

17 For the concept of risk as a factor of production see, e.g., Hicks (1931) and Picou

(1932, pp. 771 fL.).
18 Cf, chapter IV B 1.2 and 2.2.
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Figure 3

3.3.1. The Apparent Rejection of the Relativity Axiom by the
Observation of a Decreasing Velocity of Money Circulation

Suppose the safe asset considered above is money so that, with con-
stant commodity prices, we have to set ¢°= 1. Then, the wealth indepen-
dence of the portfolio structure implies that the partial elasticity of
money holding is unity.

This implication seems to contradict reality, at least this is what
ARrROW (1965, p. 44; 1970, pp. 103 f.) believes. He interprets the empiri-
cal investigations into the demand for money in the United States
carried out by SELDEN (1956), Friepman (1959), Latang (1960), and
MELTZER (1963) by saying that they ‘agree in finding a wealth elasticity
of demand for cash balances of at least 1’ and he maintains that this
evidence strongly supports his own hypothesis of increasing relative risk
aversion'?, Although from a theoretical point of view Arrow’'s hypo-
thesis did not seem to be particularly convincing, it now appears as if,
after all, it is better on empirical grounds than our hypothesis of
constant relative risk aversion. However, the appearance is deceptive,
for a closer look reveals that there is not very much to the empirical
evidence. The proof of this contention can easily be given.

First, it must be mentioned that only in one of the above empirical
investigations (Meltzer) is the wealth elasticity of cash demand
measured. In all the others, cash demand is assumed to depend on

19 Arrow (1965, pp. 37-44, and 1970, pp. 98-104) explains the demand for money by a
direct use of the expected-utility approach and assumes there are lwo assets, one safe and
one risk-bearing. Since in this case, all distributions of the opportunity set belong to the
same linear class, the solution in the {4, a) diagram that was first derived by Tonin (1958)
is identical with the direet solution found by Arrow. CF. chapter 11 D 2.3,
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income, although this is intended to stand in for wealth. The assump-
tions are only identical if wealth and income grow proportionally, that
is, if the capital-output ratio in the economy does not change. If, in the
process of economic growth, this ratio is increasing then we would
already have an explanation for the income elasticity of money demand
being greater than unity, i.e., for the falling velocity of money circu-
lation®’,

Let us, however, put these problems aside and take for granted the
fact that there has been a secular rise in the money-wealth ratio. Can we
then conclude that the empirical evidence supports Arrow’s hypothesis?
The answer is no.

Unlike Selden and Friedman, Meltzer and Latané consider interest
rates as well as wealth as explanatory variables for the demand for cash.
Their findings clearly suggest that a secular fall in interest rates is the
true explanation of the rise in the money wealth ratio. The partial
income or wealth elasticity of cash demand found by Meltzer is slightly
above unity but does not, according to him, significantly deviate from
this value. Latané even interprets his results as clearly supporting a
partial elasticity of unity. Meanwhile, a value of unity has also been
found for countries other than the United States. For West Germany,
for example, Kona (1968), WoLL (1969), WestPHAL (1970, pp. 51-77),
and MATTFELDT (1973, pp. 128-154) all provided evidence for the hypo-
thesis of a unitary wealth elasticity, although they found a much lower
interest elasticity than Latané and Meltzer did.

While these findings seem to support our hypothesis rather than
Arrows’s, Arrow suggests yet another argument in his favor, It refers to
the fact that, apart from the portfolio motive, there is a transactions
motive for money holding. The inventory-theoretic approach to money
demand as formulated by Baumor (1952) and Tosin (1956) implies thai
the elasticity of cash demand with respect to the transactions volume is
1/2 if the cost of exchanging money and interest-bearing assets is con-
stant?!. If the transactions volume is in fixed proportion to wealth, then
this result seems to indicate that the part of the wealth elasticity of cash
demand explained by the portfolio motive must be above 1 to ensurc

20 It is true, there does not seem to be any clear-cut empirical evidence for a rise in the
capital-output ratio. On the other hand, as shown in Sinw (1975, pp. 683-690), il the
sovernment sector is increasing relative to the private sector, if there is a process of verii
cal integration of private firms, and/or if the economy’s rate of growth is slowing down,
then there are clear effects that imply that the rise in the measured capital-output rittio
understates the actual rise.

21 Vikas (1975) even contends that there is a negative partial wealth elasticity of cash
demand. The unrealistic assumption that the interest payments on wealth come just al thad
point in time when transactions are to be carried out seems to be crucial Tor this resull
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that, on balance, an elasticity of unity is brought about. But this, too, is
not a particularly strong conclusion. The constancy over time of the cost
of exchanging money for interest-bearing assets can be questioned. If,
in a situation of balanced growth with a constant population, the wage
rate rises in strict proportion to labor productivity and if the cost of
exchange is purely a labor cost, for example the trip to the bank, then
the Baumol-Tobin model implies that the cash-wealth ratio stays con-
stant over time.

Suppose, once more, that we ignore this objection and accept Arrow’s
argument. Does it then follow that relative risk aversion is an increasing
function of wealth? It does not. At best, we can conclude from an
increase in the money-wealth ratio that relative risk aversion has been
increasing, but the reason for its increase cannot be inferred. Arrow
thinks the rise in wealth was responsible. The time dependence of the
optimal portfolio structure analyzed in the last section suggests instead a
different explanation. Since life expectancy has increased significantly
during this century, the degree of relative risk aversion and hence the
relative demand for safe assets must have been rising, provided, as was
argued before, people in general have a relative risk aversion below
unity.

Up to now, the explanation of money holding as being an attempt to
reduce portfolio risk has not been questioned. Following an objection
raised by StiGLiTz (1969b), WESTPHAL (1970, p. IR), Suri1 (1972), and
others, we now make good this omission.

Assume that, beside money, there is an interest bearing safe asset
available to the decision maker. Let @], @3, and a” denote the propor-
tions in the portfolio of money, the interest bearing asset, and the risk
portfolio respectively, and let g;, g3, and Q" be the corresponding
return factors where 1 =g <g;<E(Q"). Then, analogously to (14) and
(15), the parameters of the attainable end-of-period wealth distributions
are

(28) E(V)=alai+eq:+ @ E(Q")],
(29) a(V)=au'a(Q").

In these equations the structure of the risk portfolio does not show up
explicitly. In the reasoning that follows any arbitrary, but fixed, struc-
ture can be assumed, including the optimal one. To determine the opti-
mal proportions @], a3, and a’, consider the triangular opportunity set
depicted in Figure 4. As indicated in this figure, this set can be construc-
ted by forming linear combinations of the coordinates

E(V)=a, a(V)=0, if mp=l,

E(V)=aq, a(V)=0, if =1,
E(V)=aE(Q"), a(V)=aa(Q), if a'=1.
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Since the upper boundary of this opportunity set is an efficiency
frontier, it turns out that in the optimum o =0. No cash is demanded
for portfolio purposes.

The result holds for any arbitrarily given structure of the risk port-
folio. Since, given this structure, all attainable distributions V= o a+
aigia+a’Qa belong to the same linear class, the (4 o) approach
perfectly represents the expected-utility rule®” provided that the indiffe-
rence-curve system which belongs to the corresponding class is consult-
ed. The conclusion is that, even when the structure of the risk portfolio
is subject to choice, it is never optimal to hold money for portfolio
purposes. Thus Arrow’s attempt to find an empirical basis for his hypo-
thesis that relative risk aversion decreases with a rise in wealth must be
considered to be a failure.

ut efficiency frontier
a E(Q) |

i

ao(Q)

Figtre 4

3.3.2. A Risk-Theoretic Wealth Effect of a Government Budget
Deficit
In the monetarist-fiscalist debate on the efficacy of anticyclical
budgetary policy, the impact of a change in wealth on private commo-
dity demand is of crucial importance. For example, a question that has
been vigorously discussed is whether the policy of a deficit withou!
spending®, financed by taking up credit in the private market, has

22 Because of (27=0, the distributions of this linear class are bounded to the left at
Umin=E(V)— ka(¥) which, because of vy, =ala; +e3g;5], implies that
aled+ asqi]l =alaj +aigi+a E(Q7)] - kaa’o(Q")

and hence k= F(Q7)/a(Qr).
21 A budget deficit brought about by a reduction in taxes.
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expansionary effects on private demand. The question could also be
phrased ‘what happens if government donates bonds to the public’, for
this is what the described policy really is.

Suppose, as seems realistic, the public suffers from ftiscal illusion,
which means that those who get the bonds feel richer while the future
tax payers do not worry about the increase in their habilities. Then,
according to the multiperiod model of chapter IV B 2, people will
increase the consumption levels associated with any given rate of
interest and hence economic activity will be stimulated. The monetarist
objection to this argument is that the increase in wealth raises the port-
folio demand for cash so that contractive forces are brought into opera-
tion by way of an increase in the market rate of interest. This objection,
however, is not a valid one. First, it is deficient because it uses the port-
folio motive to explain money demand. Second, there seems to be an
important effect, very similar to the wealth effect on money demand,
which operates in the opposite direction.

If we consider goverment bonds as safe assets, then the wealth inde-
pendence of the optimal portfolio structure, as implied by Weber’s law,
suggesis that people are not willing to absorb all the additional bonds
into their portfolios as long as the structure of returns is unchanged.
Rather, they try to exchange some of them for other assets, not, as
monetarists are wont to contend, for money, but for risk-bearing assets.
Thus, for any given rate of interest g°— 1 of the safe asset, share prices
go up and hence the cost of raising equity capital goes down. This will
increase private invesiment and hence stimulate economic activity.

The result is by no means self-evident but hinges crucially on what
kind of hypothesis concerning people’s risk preferences is made. This is
illustrated in Figure 5. This figure is similar to Figure 4, but refers to the

0

Figtire 5
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indifference-curve system generated by the hypothesis of constant
absolute rather than that of constant relative risk aversion.

Since in this indifference-curve system the single curves can be
produced from one another by vertical shifts, an increase in wealth
obviously implies that the point of tangency between an indifference
curve and the efficiency frontier shifts up vertically. This means that,
independently of wealth, a given amount a"a is invested in the risk port-
folio. The gift of government bonds is fully absorbed into the portfolios
without a change in the return structure, and hence the policy of deficit
without spending does not directly affect private investment. Weber’s
law permits this case to be dismissed as irrelevant.

4. Summary

It was shown that the decision problem of the portfolio optimizer can
be integrated perfectly into the previously developed multiperiod
approach. Then an attempt was made to find the conditions under which
the tool box of the Markowitz-Tobin portfolio theory can be used to
calculate approximately the optimal portfolio as indicated by this multi-
period approach. Apart from the standard results of portfolio theory
reported for the sake of completeness, the analysis concentrated on the
implications that follow from thec particular preference hypothesis
established in this book.

First an interesting age dependence of the portfolio structure was
found. In the normal case of a degree of relative risk aversion below
unity, this age dependence implies that an increase in the average age of
wealth owners leads to a decrease in the demand for risk-bearing assets
which itself is likely to induce a general decline in productivity.

Another important aspect was found to be that the optimal portfolio
structure is independent of wealth. This aspect implies that an increase
in private wealth leads to a reduction in the cost of equity capital and
thus stimulates investment demand. The significance of this effect was
demonstrated with reference to the monetarist-fiscalist debate on the
efficacy of a policy of deficit without spending.

We discussed fairly thoroughly the empirical evidence of a secularly
rising money-wealth ratio that Arrow believed supported his hypothesis
of increasing relative risk aversion. It turned out that, even if Arrow’s
approach to an explanation of money demand is accepted, the empirical
results favor our preference hypothesis rather than his. But actually
Arrow’s theory of money demand itself is not very convincing. As soon
as a short-run interest-bearing asset is introduced, this theory fails 1o
explain money holding.
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Section B
The Theory of Currency Speculation

In this section the theory of economic decision making under uncer-
tainty developed above is applied to the choice problem of the currency
speculator. In contrast to portfolio theory, the analysis is only an exer-
cise in positive theory. Since speculators are important people it is
worth-while trying to understand their behavior, but the aim of specula-
tion theory is not to show them how to increase their profits.

The analysis draws partly on the approaches of Gruper (1966),
FELDSTEIN(1968), LELAND (1971), and HocHGEsann (1974). However, in
so far as this study integrates the problem with a multiperiod approach
and explores the particular implications of Weber’s law and the BLoos
rule, it goes beyond them.

I. The Basic Problems of the Spot and Forward Speculators

The decision problem of the currency speculators is analyzed in a
highly idealized model of currency markets with perfectly flexible
exchange rates. It is assumed that all transactions are carried out at
fixed dates between which nothing happens. At each date there is a spot
and a forward market. In the latter the conditions for an exchange in
currency on the subsequent transactions day are settled'. The analysis is
confined to the two-country case. The domestic country is the United
States, the foreign country Germany; accordingly the currencies are $
and DM. The exchange rate is the dollar price of one Deutschmark.

Al the decision date, speculators know the current spot rate w{,” and
the current forward rate wy, but the rates that will obtain after one
period, W;* and W,", as well as all other future rates, are unknown.

Decisions therefore have to be made on the basis of equivalent objective
probabilities.

1.1. Forward Speculation

The forward speculator buys or sells forward currency, planning to
carry out a compensating transaction in the spot market when the
delivery date comes and he has to meet his obligations. Consider first
the case where he buys, i.e., where he has a long position in currency
futures. If he buys # DM ‘today’ in the forward market then ‘to-

! The possibility of multiple forward markets, each concerned with a different time in
the future, is excluded. A model with multiple forward markets was developed by SoHMEN
(1966 and 1973).



276 Areas af Application Al

morrow' he has to spend $ # w! to meet his obligations, but after
exchanging the # DM received through the forward contract he has a
dollar revenue of & W His expected profit in dollars after one period
therefore is

(1) X=h(Wf—wy).

Next consider the case of a short position. If the speculator ‘today’ sells
k DM in the forward market then he ‘tomorrow’ receives $ & wg , but to
meet his obligations he has to spend $ & W] for a purchase of Deutsch-
marks in the spot market. Hence his profit is $ k{w{f— Wf‘). If we set
k= — h so that a forward sale of Deutschmarks is interpreted as a nega-
tive purchase, then his profit is again given by equation (1).

Forward speculators, in principle, do not need capital. It could, there-
fore, be conjectured that a speculator can make his commitment A& as
large as he wishes. Bur this is not so. In practice an institutional rule has
developed that limits his commitments, and we shall see that there are
good reasons for this rule. The banking companies carrving out the for-
ward contracts for their customers usually require a safety margin of
between 10 and 20 percent of the dollar value of the forward commit-
ment, since they are liable to the foreign trading partners. The level of
the safety margin in general seems to be independent of whether specu-
lators sell short or buy long. As interest is paid by the banks on the value
of the safety margin this rule does not involve costs to the speculator but
merely links the maximum speculative commitment with his personal
wealth?.

Given this information, the opportunity set of end-of-period wealth
distributions () attainable by the speculator can easily be described.
For simplicity we assume that, apart from the speculative profit, the
speculator does not have further random income flows, As usual, non-
random flows arc admissible, however, It i3 assumecd that their prescent
value is a part of wealth and can be used to provide the safety capital
required by the banks. Let § denote the proportion of safety capital in
the dollar volume of the commitment, a the speculator’s wealth after
subtracting period consumption, and g—1 the safe market rate of
interest. Then the opportunity set sought obviously is given by

@ v=ag+hW\-wl), |h| <=
Bwy

2 The information was given on July 27, 1977, by the Deutsehe Bank, Mannheim.,
GRrUBEL (1965, p. 252) reports a 10% safety margin, but his information refers to the time
where the exchange rate could only fluctuate within the narrow official band.
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1.2. Spot Market Speculation

Next, consider the case of speculation in the spot market. In contrast
to forward speculation, a speculation in the spot market is associated
with an international movement of capital. Spot-market speculators
import or export capital without protecting themselves in the forward
market. Suppose a spot-market speculator plans, for one period, to buy
foreign fixed-interest bonds for A* dollars and to invest the remainder
of his wealth, @— h*, in fixed-interest domestic bonds. Then at the end
of the speculation period his wealth is

K

4
(3 Vi=(a-h*)q'+ h*—-4"
Wo
h*qr‘ : I}" WK
=aq'+—— | W5 ——+ ]
Wy g”

where g/ — 1 is the domestic and g — 1 the foreign rate of interest. 1f,
however, the speculator plans to borrow k* dollars from foreigners in
order to invest them in the domestic country then his end-of-period
wealth is ag!+ k*g' — g W k*/w) or, if with k*= — h we interpret a
capital import as a negative capital export, it is again given by equation
3).

1.3. Interest Arbitrage as the Link between Spot and Forward
Speculation

A comparison of the end-of-period wealth distributions (2) and (3) of
the forward-market and the spot-market speculators may, at first sight,
give the impression that both kinds of speculation are significantly
different from each other. This impression is, however, wrong. This can
be seen very clearly when the role of interest arbitrage is considered in
addition to speculation®. Like spot-market speculators, interest arbi-
tragers are capital importers or exporters, The difference is simply that
arbitragers protect themselves in the forward market while speculators
do not. .

Suppose, from the viewpoint of the arbitragers, domestic and foreign
fixed-interest bonds are perfect substitutes. Then we must have®

3 Interest arbitragers and speculators are not necessarily different people, the latter can
participate in arbitrage with that part of their wealth which is safely invested.

4+ With eguation (4) we assume an infinitely elastic “arbitrage schedule” of the kind
assumed in the classical theory of interest parity. GuuseL (1966, pp. 18-21) questioned
this assumption, peinting out that even arbitrage is subject o political risk. CI. also
ScHrOnEr (1969, pp. 30-32).
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(4) q=q =4~ —§

for, if g'>g" wj/wl, there would be an enormous inflow of risk free

capital which would reduce wj and/or raise wj, and if g/ <g” w] /w(, a

corresponding capital outflow would induce the opposite adjustments.
By using the arbitrage equation (4), equation (3) now can be writien

as

*

gt kT
—{ H'* — :
wg‘ (W7 —wo )

(3) Vzﬂq+h

This equation already resembles equation (2). The only difference is that
in (2) the speculative commitment 4 was measured in foreign currency
(DM) while in (5) the commitment is denoted by A* which is the dollar
value of the capital to be exported. This difference, however, does not
matter. If we measure the commitment of the spot-market speculator by
the Deutschmark value of the redemption by setting h =g h*/w{, then
(5) takes on exactly the same form as (2). This surprising result origi-
nates from TsianG (1959) who showed that spot-market speculation is,
in economic terms, the same as a combination of forward speculation
and pure interest arbitrage.

Thus it seems that from now on we only have to consider the forward
speculator. However, the constraint |4 | <ag/(fwg) has yet to be
examined. If the capital exporting spot-market speculator usées his total
wealth to buy foreign bonds or if the capital importing spot-market
speculator takes on a debt up to the value of his wealth, then we have
|h*| =a, ie., |h] =aq/wi. It is not very likely that a speculator could
succeed in making an even higher commitment by taking on additional
debt for, in this case, some creditors would have to lend without securi-
ty. Thus, for values of f# that realistically are significantly below unity,
the opportunity set of the forward speculator who makes use of banks
specializing in speculation is larger than that of the spot-market specula-
tor. Since, however, the latter can always become a forward speculator,
expression (2) can be used quite meaningfully to describe the opportu-
nity set of any type of currency speculator.

| .4. Imtegrating the Speculation Problem into the Basic Multiperiod
Approach

Provided with this attractive result, an attempt is now made to inte-
grate the decision problem of the speculator into the basic model of
stochastic multiperiod planning. First we check whether the opportunity
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set described by (2) satisfies the requirement of stochastic constant
returns to scale and write it in the form

(6) V=aQ
q

=

Wi —w] hw,
where Q=g+ y(—lr—”), ‘}rg 0
W a

This expression isolates an opportunity set of standard risk projects.
Stochastic constant returns to scale prevail if this opportunity set is
independent of the level of wealth, @. Since the admissible range for y is
obviously independent of wealth, the condition is satisfied only if, in
addition, the level of the speculative commitment has no influence on
the current forward rate, wl, and the probability distribution of the
future spot rate, W&, We ensure this by the assumption of a competitive
market structure.

A second assumption in the basic mode! is that the distributions Q at
different points in time are stochastically independent of each other. If
it is assumed that the speculators understand the operation of the
market sufficiently well to take account of the arbitrage equation (4),
then, in (6), wy can be replaced by wg g’/g”. As in the case of portfolio
analysis, our assumption therefore implies that the speculators expect
stochastically independent growth rates, that is, a random walk in the
exchange rate’. The assumption implies that, after an increase in the
current exchange rate, the speculators do not expect either that there
will be a relatively smaller rise in the exchange rate than they con-
jectured before this increase or that the observed change is simply a sign
of even greater relative changes in the future. In short, a unitary
expectation elasticity is assumed?®.

Another condition required for the multiperiod planning model was
that the opportunity set should contain at least one element that avoids
with certainty the loss of all wealth. This condition is clearly satisfied,
since each & in the range 0=h f:aqr’w{}" gives the desired protection.

With this, the integration of a wide class of speculation problems into
our basic model is almost complete. We have only to assume additional-
ly that, at each transactions date, the decision maker, after completing

5 IF the present approach is interpreted as referring to speculation in commodities
futures then an assumption concerning the kind of price movement is unnecessary since
there is no connection between forward and spot prices similar 1o {4).

6 We thus decide for an intermediate solution between two extreme assumptions that
have been favored in the literature. Cf. FriEpman (1953, p. 175), Aueer (1970, esp. pp.
304-306), and Nurkse, R., International currency experience. Princeton 1944, The last is
cited according to Aviser (1970, p. 304) and Sonsen (1973, p. 73) since it was not avail-
able in the West German library system.



280 Areas of Apgﬁcauan A%

the previous contracts, thinks not only about his new commitment but
also about the level of withdrawals for current consumption and that he
attempts to maximize the multiperiod preference functional derived
from the laws of Weber and Fechner. Then his implicit shori-run aim is

) max E[Ulag+h(WE—wi)l, |n| =2,
i ﬂWﬂ

where U(.) is one of the time-dependent Weber functions. The implica-
tions of this aim will be discussed in the following sections.

2. Optimal Speculation in the fdeal Case

2.1. The Two-Sided (u, z) Diagram

To solve the maximization problem (7), the (u, a) diagram is consi-
dered again. Thus, from (2) the needed distribution parameters

(8) E(V)=aq +h[E(W})—w; ]
and’
9) a(V)=hsgnha(W]).

are calculated.

As is known, for an exact representation of the choice problem in a
(i, o) diagram it is necessary for all distributions in the opportunity set
to belong to the same linear class. To check this condition, calculate the
standardized random variable Z=[V —E(V))/a(V):

K K
(10) Z=sgnhm!.

a(W7')
Equation (10) shows that, in general, there are rwo linear distribution
classes rather than one. If a long position is taken (sgn &= + 1), then the
distribution class to which the future spot rate (W) belongs applies,
but if a short position is taken (sgnha= —1), the distribution class
defined by the ‘mirror image’ of the future spot rate applies. Only if wf
is symmetrically distributed, will these two distribution classes coincide.

7 For the definition of the *sign’ function cf. footnote 16 in chapter 11 D
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But there is no reason to expect symmetry. Rather, the exchange rate
distribution seems to be right skewed. This is already suggested by the
fact that, at the level of zero, the exchange rate has a lower bound while
there is no obvious upper bound. If a symmetry assumption is suitable
at all, then it should refer to the logarithm of the exchange rate so that
H«’{f and 1/ erf are equally distributed. Hence, the usual (¢, o) diagram
cannot be used to find a solution. But what about considering two
diagrams?

This is done in Figure 6, where two indifference-curve systems of the
kind depicted in Figure 7 in chapter I11 A are put together in an appro-
priate way. In this figure, it is assumed that the wealth distributions are
bounded to the left, which, according to (10), implies that Wi is
bounded from above and from below®. For the time being, the ranges of
abnormal indifference curves where the BLoos rule comes into operation
are left out. Accordingly, it is temporarily assumed that the opportunity
locus does not intersect with these ranges. In section B 3 other possibili-
ties are considered in detail.

The right-hand section of the indifference-curve system refers to a
long position (4> 0), and the left, that is the mirror image of the normal
representation, refers to a short position (A <0). Because of the asymp-
totic efficiency of the variance’, the indifference curves are nearly
symmetrical with respect to the ordinate when the coefficients of varia-
tion are small. But the higher the standard deviation for any given
mean, the greater the effect the difference between the two distribution
classes has on the indifference-curve shapes. When the distribution of
W¥ exhibits the described asymmetry, the end-of-period wealth distri-
bution is right skewed in the case of a long position and left skewed in
the case of a short position. In connection with the preference for right
skewed distributions, suggested by Weber’s law'?, this implies that the
indifference curves are more curved in the left section of the diagram
than in the right''.

Since the points where the indifference curves enter the ordinate indi-
cate the corresponding certainty equivalents, the indifference curves of

B With Wf being unbounded from above, in the case of strong risk aversion (6= 1)
there would be lexicographic pseudo indifference curves in the left section of the diagram.
Under weak risk aversion (0 << 1), however, even in the case of an unbounded distribu-
tion of W, in the neighborhood of the ordinate there is always a range where the indiffe-
rence curves have the normal shapes provided that, for wi*—ce, the density converges at
least as fast as that of a normal distribution. CF. the analysis towards the end of section 111

B1.2.
9 Cf. chapter 11 D 2.2.1.

10 CFf. the corresponding remarks in the last third of section 11T A 2.3.2.
11 That long and short speculation cannot be treated symmetrically was recognized by
Kenen (1966, pp. 151 and 166).
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both sections of the diagram that enter the ordinate at the same point
can be considered as single indifference curves extending over both
sections. Whenever the points representing end-of-period wealth distri-
butions are situated on the same connected indifference curve, they are
evaluated as being equal, no matter whether they are in the right or the
left sections of the diagram.

Strictly speaking two arrows should be shown in the diagram, which
are labelled a(V), start at the origin of the abscissa, and go in opposite
directions. However, to obtain a scale that goes in one direction over the
whole abscissa, the lefi-hand part is indicated as — (V) and the right-
hand part as + o(¥), that is, in general as sgnAg(¥). This way, the
indifference curves define a preference structure over the distribution
parameters E(¥) and sgn ha(V) that is identical with the one implied by
the expected-utility criterion. Thus, for arbitrary distribution classes of
WL, the goal function (7) can be replaced by

(an max ULE(V), sgnha(V)], || "L

Bwy

By using the (i, sgn h o) diagram the optimal speculative commitment
n
short long
A><

_ 0 : sen ho
el 0 ﬁnpt ag h (demand for cur-
C pwl pwl rency futures)

Figure &
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can easily be determined if the opportunity set is known. This set will
now be considered. Calculating

(12) IIF,:_‘:,gruica;gif'}

a(W7)
from (9) and inserting this expression into (8) we find that the opportu-
nity locus is given by a straight line,

=E(V)= ha(V .
(13) u=E(V)=aq+sgnha(V) W)

"

where account has to be taken of the constraint

aq a(W)
(14) o(V)y=s—+——
gowi

that corresponds to the constraint A | =ag/( fwq ).

As an example for the case E(W;)>wJ, the opportunity locus is
represented by the line A4 of Figure 6. Since, by assumption, this line
does not enter the range of abnormal indifference curves, there are two
possibilities.

Either, as in the diagram, the optimal point is determined by a
tangency solution or it coincides with the right-hand end of the ‘oppor-
tunity line’. In the latter case the speculator buys as many Deutschmarks
in the forward market as the bank allows. In general, the number of
Deutschmarks bought is shown by the ray parallel to the abscissa which
was constructed by using the proportionality between sgn Ag{ V) and 4
as given by (12).

2.2. The Reaction of the Demand for Forward Currency to Changes
in Expectations

The influence speculators have on the spot and forward exchange
rates is crucially determined by what they expect the future spot rate to
be. For an evaluation and possible regulation of speculative trade, it is
therefore useful on the one hand to have a theory concerning the forma-
tion of expectations and, on the other, to have a theory explaining how
speculators react to a change in expectations. The former is bevond the
scope of this book. The latter, however, is implicit in the approach
developed above.
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2.2.1. Changes in the Expected Spot Rate

It has already been shown in Figure 6 that a long position is advanta-
geous to the speculator if E(W)>w{. The kind of commitment that is
chosen in the cases E( Wf‘r}{ w{r and E(W[)=w] can casily be deter-
mined.

According to (13) and (14) a reduction of E( Wf} turns on the line 44
in a clockwise direction, while at the same time its length changes, since
the ends of the line move vertically. IfE{Wf*'] = wy, the line is horizon-
tal. Because the connected indifference curves have a slope of zero at the
ordinate, in this case the point of tangency coincides with the ordinate
and hence h,, =0. If the expected spot rate is below the forward rate
then the line AA slopes downwards to the right and the point of
tangency C is in the left section of the diagram: a short position is
advantageous (f,,;<0). The result is summarized in the following
expression

(15) h{210 & E(WF){Zhw],

Although (15) shows that the demand for forward Deutschmarks
globally is a rising function of its expected spot rate, we do not know
whether this function is monotonic. FELpsTEIN (1968, pp. 186 .) pointed
out that there may be counteracting income and substitution effects of a
change in E(W]) so that there is a possibility that the demand for for-
ward Deutschmarks is not everywhere a rising function of the expected
Deutschmark spot rate'?,

For a general evaluation of speculation, the question is of great
importance regardless of whether the speculators® abilities in forecasting
the proper spot rate are estimated optimistically or pessimistically. The
pessimist would stress that the expectation of a speculator as described
by E(WT) is usually wrong and is su bject to large fluctuations so that,
from his point of view, it would be desirable if dh/dE( Wf}= 0, for then
the transmission mechanism between expectations and forward rates is
interrupted. The optimist, on the other hand, believes that speculators
link changes in the forward rate with changes in the actual future spot
rate, which requires ah/aE( W‘F]:}U if speculators are well-informed,

The reason for the indeterminateness mentioned by Feldstein is the
generality of the preference hypothesis he used, which required nothing
more than risk aversion. Fortunately, Weber's law provides us with
additional information that gets rid of the indeterminateness: the pessi-
mist’s hopes are dashed and the optimist’s hopes are confirmed.

To see why, consider Figure 7. There the original opportunity line 4.4
with the point of tangency C moves counterclockwise towards BB since

12 CL. also LeLano (1971, pp. 260 [y and HocHaEsaND (1974, pp. 116 1. and 128 £.).
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an increase in the expected spot rate is assumed. The new point of
tangency is £. The movement from C to £ can be divided into an income
and a substitution effect. The income effect (IE) is represented by a
parallel shift of the line AA4 to the position 4.4 and by the corresponding
shift in the point of tangency from C to D. Because of the homotheticity
of the indifference-curve system as implied by Weber's law, point D is
to the right of point C: the income effect is positive. The substitution
effect is represented by a movement of the opportunity line from posi-
tion 4’4’ to BB along a given indifference curve. The point of tangency
accordingly moves from D to E. Because of the convexity of the indiffe-
rence curves, E clearly is to the right of . Hence the income and substi-
tution effects reinforce each other and so we have dh/dE(W[)> 0.

In an analogous way, this reasoning can be used for the case of a
short position. If the supply of forward currency is interpreted as a
negative demand, the unambiguous result emerges that, concerning
tangency solutions of the kind C and E, the demand for forward curren-
cy is a strictly monotonically increasing function of the expected spot
rate. By inspection of (12) and (14), it is easy to see that this result
cannot be maintained in the case of a corner solution. Speculators who
have committed as much as their banks allow do not react to marginal
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changes in the expected spot rate. On the other hand these speculators
are only a small proportion of all speculators; they cannot have an
influence on the qualitative aspects of the market reactions to changes in
expectations.

2.2.2. Changes in the Variance of the Future Spot Rate

Speculators base their behavior on a conjectured distribution of the
future spot rate. The standard deviation of this distribution can be inter-
preted as a measure of their degree of confidence in the estimation of
the mean of this distribution. Thus, from an allocative point of view, it
is to be hoped that the influence that speculators have on the exchange
rates is smaller the higher the standard deviation, for the less confident
speculators are about their own forecasts, the higher the probability that
they will create, rather than reduce, fluctuations in the time path of the
exchange rate,

By reference to equations (12) and (13), it can easily be shown that the
model speculator does not disappoint this hope.

With regard to the change in the initial tangency solution, there are
two effects that, thanks to Weber's law, reinforce each other'’. One is
that, according to [13} the opportunity line in the (u, s5gn #¢) diagram
gets flatter when o( W, ) rises. It takes place regardless of whether the
point of tangency was initially in the left or right section of the diagram.
As is known from the previous section, as a reaction to this movement
in the opportunity line, the point of tangency moves unambigously
towards the ordinate. Thus g(V) is getting smaller. This effect, that, by
itself, reduces the optimal commitment h, is reinforced by a second
effect: according to (12), after an increase in J{Wf}, each value of g( V)
is associated with an absolutely lower value of A than before.

If, initially, the solution point is situated at an end of the opportunity

line, then, for marginal changes in a( Wﬁ, the speculative commitment

15 not affecled Independently of af W; } we then have h= aqfﬁwo or
h= —ﬂqfﬁwn

Since a corner solution, as a rule, does not occur for all speculators,
we again find a clear-cut conclusion for the aggregate. 1f all speculators
expect higher variances of the future spot rate the commitments in the
aggregate are reduced regardless of whether these are long or short.

2.3. The Wealth Effect and the Stability Problem

From the application of our basic model to the portfolio problem
(A 3.3.), we know that the optimal portfolio structure is independent of

13 Cf,, however, FELDSTEIN (1968, p. 187).
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the decision maker’s wealth. In the case of speculation a similar result
can be found.

In Figure 6, an increase in the level of wealth (#) available after a sub-
traction of period consumption implies a parallel shift and lengthening
of the opportunity line so that its ends (4) move upwards along rays
through the origin. This can be checked directly by inspecting (13) and
(14). Because of the homotheticity of the indifference-curve system, this
also means that the point of tangency C moves upward along a ray
through the origin. Hence the demand for Deutschmark futures rises in
strict proportion to wealth. If initially, in contrast to Figure 6, A, <0
had been the case, then analogous reasoning would have shown that the
optimal supply of Deutschmark futures (— hgp,) rises in proportion to
wealth.

This wealth effect has some relevance for the stabilizing effects of
speculation'®, If the speculator was already committed in the previous
period, then at the beginning of the period his wealth before consump-
tion depends on the current spot rate. Because of the constancy of the
marginal propensity to consume out of wealth, this means that the level
of the funds to be reinvested also depends on this rate. With a long
position it rises, with a short position it falls. Hence the wealth effect
implies that the current demand for currency futures depends on the
current spot rate.

Suppose, before the decision point in time 0, the speculator expects
E( W{‘ )> H-'J-.. In this case, he plans to take a long position and, because
of the assumption that the expectarion elasticity is one, he sticks to this
plan regardless of what the variates of the current spot and forward
rates, wg and wg, happen to be. If the speculator’s previous commit-
ment was long, then, at point in time 0, his demand for currency futures
is a rising function of the spot rate and, because of the arbitrage condi-
tion (4), also of the forward rate. Obviously, in this case, the wealth
effect is destabilizing. If, however, the speculator was previously in a
short position, then the reverse is the case. At point in time 0, his
demand for Deutschmark futures is a falling function of the forward
rate, The wealth effect 1s stabilizing.

Analogous reasoning can be applied to the case where, at point in
time 0, the speculator decides to sell short. Thus we reach the general
conclusion that the wealth effect has a stabilizing influence on the
exchange market if speculators switch between long and short positions,
and has a destabilizing influence if they stay with a given type of specu-
lation.

14 A5 far as is known, the wealth effect has been disregarded in the extensive hiterature

on the problem of whether or not speculation is stabilizing. Reviews of the literature are
given by HoCHGESAND (1974) and STeinMANN {1970),
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3. On the Possibility of an Excessively Short Position

In this section, an aspect of the speculator’s decision problem is
studied that may bring about a particular preference for short positions.
It is the BLoos rule'” that is responsible for this preference for it allows
the speculator to shift part of the speculation risk on to the shoulders of
others.

As we know, the BLoos rule comes into operation only if the gross
wealth distribution extends partly over the negative half of the wealth
axis. Then, in the usual (4, o) diagram, the distribution is represented by
a point below the border line'® =& a, where — & is the highest lower
bound to the standardized end-of-period wealth distribution. We there-
fore need to think about where this border line is located in the two-
sided (u,a) diagram and what shape the indifference curves have
beyond it.

Since, in the present case, there are fwo standardized end-of-period
wealth distributions according to whether the speculator holds a long or
a short position, two lower bounds, &; and k5, have to be distinguished.
By using (10), these bounds can be derived from the distribution of the
future spot rate Hff. Assume, to take a plausible!? example, logarithmi-
cally symmetrical bounds:

=
Then
EWF) 1
7 kL= Tl
(17) LTy 144
and
E(WT)
18 ks= "
(18) ST awh

so that we find the following border lines in the (u, sgn ho) diagram:
(19) E(V)=Fksgn ho(V),

(20) E(V)=—kssgnha(V).

13 CIL chapter 111 B,
I8 Cf. expression (111 A 44).
" Cf, the remarks in section 2.1,
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They are both depicted in Figures 8 and 9. Beyond these border lines
two types of indifference curves are possible'’. In the case of strong risk
aversion (g2 1; Figure 8), there are pseudo indifference curves in the
form of straight lines through the origin. In the case of weak risk aver-
sion (£< 1; Figure 9) there are genuine indifference curves that become
concave at some stage, change the signs of their slopes, and eventually
intersect the abscissa.

p=—sgnh ok, p=sgn ok,

short #t| long
position| position

j= —sgnhok, jt=5sgn hok;

it
short long
.. position| position

sgn ho
ix D=g<l

Figure 8 Figure 9

The question now is, under which conditions does the opportunity set
available to the decision maker contain end-of-period wealth distribu-
tions that map beyond the border lines (19) and (20). According to (1 3)
and (14), the safety margin parameter f§ required by the banks is of
crucial importance for this question. If use is made of this parameter,
the question can be posed more precisely by asking which values of f
define critical levels below which the opportunity line given by (13) and
(14) goes beyond the right (19) or left (20) border lines. To calculate
these levels, call them 87 and B3, first combine (14) with (19) or (209, s0
that

E(V) _ag a(WT)
kK B* wi

. k=l ks; B*=PBL, Bs.

I8 Cf, Figures 10 and 12 in chapter [11 B. In Figure 8 above it is assumed that the funnel
edges are tangent to the indifference curves. As we know from the discussion of Figure 12
in chapter 111 B this is a particular property which does not hold for all 1ypes of distri-
bution if 1 <&<2. The property is irrelevant for the present discussion.
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Now replace E(V') according to (8) and substitute
ag
h=sgnh——, *= 5k B
g Brwg B*=BL, B3

This is possible because the constraint |h|<ag/(fwl) from (T) is
equivalent to (14). Finally, specify & by using the values given
alternatively by (17) and (18). Then the result is

EWY) A
Zh == wa 144
and
« E(W)
(22) fr=——1"(+4)-1.
Wy

In order to find out under which conditions the required safety
margin satisfies its purpose, that is, when it is above the critical values
given by (21) and (22), we assume for the time being that all agents
involved estimate the same probability distribution for the future spot
rate (idealized uncertainty) and consider two extreme cases.

1. Suppose E{WK}} wg . Then Ar=0if A is small enough to render

E(W{)/(1+1)=wq. In this case, no safety margin need to be required
by the banks, since the smallest possible spot rate exceeds the forward
rate. It is true, since A&>0, a safety margin would be necessary to
exclude negative gross wealth in the case of a short position. However,
even if the banks did not require a safety margin, no one would engage
in this type of speculation, for, at best, wealth would be maintained at
the same level while the most likely outcome would be that it is reduced.
This result holds irrespective of the fact that the speculator can shift
some of the risk on to his bank’s shnulders An dnalng-:}uq argument can
be given in the case E(WT)<wy and E(W{)(1+1)<w, so that 8¥=0.
Here, too, we find that for A sufficiently small no safety margin is
required.

2. Another extreme case is A— o2 For a lang position a safety margin
of 100% (ff=1) will then be needed. If, in the worst of all cases, the
value of the foreign currency falls to zero, the wealth of even the most
courageous speculator would be just enough to buy, as contracted, the
devalued foreign currency and to throw it into the waste paper basket.
The situation is very different in the case of a short position. Here, in
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the limiting case, an infinitely high safety margin is needed; this means
that the bank should not allow short speculation at all.

By their very nature, both of the extreme situations illustrated do not
reflect normal expectations about changes in the exchange rate. Never-
theless, there are more realistic examples, which do confirm the obser-
vation that, in the case of a short position, it is hardly possible to avoid
transferring some of the speculator’s risk to other’s shoulders. Suppose
that a doubling or a halving of the spot rate are considered to be the
most cxtrcmc possibilities (A=1) and assume, for simplicity,
E(WFy=w]. Then for a long position a minimum safety margin of
about 50" is needed while about 1007 is needed for a short position.
Comparing this with lhe. in practice, more realistic margin of 20%, we
find from |k | =ag(fwg) that, in the case of a long position, the specu-
lative commitment can be 2 1/2 times and, in the case of a short posi-
tion, 5 times as large as it would have to be if a risk transfer were to be
excluded, Formally this means that the opportunity line in the
(u, sgn ho) diagram exceeds the right-hand border line by 2 1/2 and the
left-hand border line by 5 times the corresponding distance to the ordi-
nate!

In the light of this dramatic change in the previous assumption that
the opportunity line does not go beyond the range of normal indiffe-
rence curves, the previous results definitely need to be rechecked. Little
happens, when there is strong risk aversion (&= 1; cf. Figure 9). Since all
pseudo indifference curves outside the funnel are subordinate to those
inside, a solution is only possible within the funnel, in the extreme case
at the edges (cf. footnote 18). Equation (15) will then continue to be
true. Speculators in this case are so afraid of losing their wealth that,
being able to avoid some of their obligation in the case of a total
disaster, has no appeal for them. Unfortunately, it was this very hypo-
thesis of strong risk aversion that was shown to be rather unrealistic '”.
Under weak risk aversion (0<é&<1), optimal solutions outside the
funnel are clearly possible.

Figure 10 shows a particularly curious situation. There, £( Wiyswg,
so that a long position with the point of tangency C could be expected to
be optimal. But, in fact, the opportunity line reaches the highest indiffe-
rence curve al its left end, at point P. Not a moderate long position but a
short position of the highest possible extent is optimal. This is the case
mentioned in the introduction.

The reason for this result is the assumption of logarithmically symme-
trical bounds to the probabhility distribution of the spot rate. It implies

19 (F. section 111 B 2, towards the middle, and section 1V B 2.3.2.
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the limiting case, an infinitely high safeity margin is needed; this means
that the bank should not allow short speculation at all.

By their very nature, both of the extreme situations illustrated do not
reflect normal expectations about changes in the exchange rate. Never-
theless, there are more realistic examples, which do confirm the obser-
vation that, in the case of a short position, it is hardly possible to avoid
transferring some of the speculator’s risk to other’s shoulders. Suppose
that a doubling or a halving of the spot rate are considered to be the
most extreme possibilities (A=1) and assume, for simplicity,
E(WFy=w]. Then for a long position a minimum safety margin of
about 50% is needed while about 100% is needed for a short position.
Comparing this with the, in practice, more realistic margin of 20%, we
find from |k | =ag(fwg) that, in the case of a long position, the specu-
lative commitment can be 2 1/2 times and, in the case of a short posi-
tion, 5 times as large as it would have to be if a risk transfer were to be
excluded. Formally this means that the opportunity line in the
(i, sgn ko) diagram exceeds the right-hand border line by 2 1/2 and the
left-hand border line by 5 times the corresponding distance to the ordi-
nate!

In the light of this dramatic change in the previous assumption that
the opportunity line does not go beyond the range of normal indiffe-
rence curves, the previous results definitely need to be rechecked. Little
happens, when there is strong risk aversion (¢= 1: cf. Figure 9). Since all
pseudo indifference curves outside the funnel are subordinate to those
inside, a solution is only possible within the funnel, in the extreme case
at the edges (cf. footnote 18). Equation (15) will then continue to be
true. Speculators in this case are so afraid of losing their wealth that,
being able to avoid some of their obligation in the case of a total
disaster, has no appeal for them. Unfortunately, it was this very hypo-
thesis of strong risk aversion that was shown to be rather unrealistic!?,
Under weak risk aversion (0<eg<1), optimal solutions outside the
funnel are clearly possible. _

Figure 10 shows a particularly curious situation. There, E(W Sy wy,
so that a long position with the point of tangency C could be expected to
be optimal. But, in fact, the opportunity line reaches the highest indiffe-
rence curve al its left end, at point P. Not a moderate long position but a
short position of the highest possible extent is optimal. This is the case
mentioned in the introduction.

The reason for this result is the assumption of logarithmically symme-
trical bounds to the probability distribution of the spot rate. It implies

19 CF. section 111 B 2, towards the middle, and section 1V B 2.3.2.
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that, in the case of a short position, the gross wealth distribution is
strongly left skewed. As we know, this property is a disadvantage if the
gross and the net distributions coincide, an aspect that is represented by
the stronger curvature of the indifference curves in the left section of the
figure2”. However, if the gross distribution can take on negative values,
then, because of the Biroaos rule, this disadvantage can be compensated
Or even overcompensated.

M

o/
/

0 ;5511;"1

ag 0 ag h
fiwg pwg
hnpq

Figure 10

That there is the possibility of an overcompensation can be shown by
a thought experiment. Consider, as a first step, the case of a risk neutral
decision maker (e=0). For him, the indifference curves within the
funnel are horizontal and outside they bend downwards, since the kink
in the utility curve, brought about by the Broos rule, clearly implies risk
loving behavior?!. Assume that the opportunity line the decision maker
faces is also horizontal, E(W")=w{, and that, at its right-hand side, it
just ends at the edge of the funnel (f=4). Then, since (21) and (22)
give B¥=1>21/(1 + 1)= =}, the opportunity line has to go beyond
the left-hand edge of the funnel. The situation is illustrated in Figure 11.
Obviously, the optimal point is at the left end of the opportunity line,
i.e., at point P. It is clearly better than, for example, point ¢ which is on
the ordinate.

0 Cf, section 2.1 above.
2 To see that there is a negative slope consult equation (111 B 5).



B The Theory of Currency Speculation 203

[ L
It e=(
'\R ; /
\ /
vay ia
¢
[\ /N
\ S/
\ /
\ J,”
\ P
\/ ] ,
0 sgn ho 0 sgn ha
Fipure 11 Figure 12

MNow consider the second step. Rather than setting £=0, we assume ¢
is slightly above 0. Then, for any given ratio u/(sgn ko), in the right-
hand section of the diagram, the indifference-curve slope is higher and,
in the left-hand section, it is lower than before, while at the ordinate it
remains zero, With a strong increase in &, it could happen that £ is
situated on the same, or even on a lower, indifference curve than Q.
But, for a sufficiently small increase in &, the indifference curve passing
through Q will, as in Figure 11, still be below P. Figure (12) represents
the new situation.

In the third and last step, change the position of the opportunity line
by reducing the initial wealth @ and increasing the expected spot rate
(E(WF)>wd). Via the movements of the ends of the opportunity line,
as indicated by the arrows in Figure 12, we are then indeed able to repro-
duce the situation depicted in Figure 10.

This raises considerable doubt concerning the functioning of the
market in currency futures. If speculators choose a short position
simply because they hope they will not have to meet their liabilities in
certain cases, they cannot be expected to properly link the forward rate
with the future spot rate. But, in fact, the problem is even more
complex.

The suspicion of a malfunctioning of the market seems to vanish if we
take into account the behavior of banking firms. Banks will have a
strong interest in avoiding being burdened with the speculator’s insol-
vency risk, so they require a safety margin just high enough to prevent
this from happening. Actually, the safety parameter f# could be consi-
dered as a measure of the most extreme changes in the spot rate that the
banks think possible. Unfortunately, however, there are two reasons
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why this argument cannot really eliminate the doubts about the perfor-
mance of the market raised by the above analysis.

The first is that the banks themselves, particularly when they are
facing insolvency problems, may have an incentive to take advantage of
an excessively short speculation. The recent bankruptcy of the West
German Herstait Bank that had bad luck in an excessively short specula-
tion seems to be a good example.

The second is that banks and speculators might have different ideas
about the possible spot rates, The safety margins banks require at best
indicate the changes in the spot rate they consider possible, but these
margins do not provide information on what the speculators think. If
both types of agents calculate with different probability distributions, it
may well be that speculators believe the situation is as depicted in Figure
10 while banks believe that they are secure.

There does not seem to be a straight-forward way of evaluating this
possibility from a welfare point of view, even if we confine ourselves to
the Pareto criterion. From an extremely subjectivist position, an excessi-
vely short speculation is not a disadvantage, cither from the viewpoint
of the speculator or from the viewpoint of the bank; otherwise a con-
tract would not have been made. The Pareto criterion may, however,
also be used in a more objective and less tautological form. Suppose,
after an exchange of information between bank and speculator, both
parties agree on the probability distribution of the spot rate. Then, the
decision in favor of a speculative commitment that, for the speculator
and the bank together, brings about an expected net loss must indicate
an objective deterioration for at least one of them. If the exchange of
information really took place the excessively short speculation would no
longer occur, But it seems hard to imagine such an exchange of informa-
tion taking place, for the speculator who plans an excessively short
commitment has no incentive to reveal his information.

4. Summary

With the theory of currency spot and forward speculation another
area has been investigated to which the previously developed approach
can be meaningfully applied. For this application it seemed useful to
derive a two-sided (u, o) diagram by means of which the optimal specu-
lative commitment, whether long or short, can easily be found without
assuming a particular distribution class for the spot rate estimated by
speculators. A number of results were achieved that, although formula-
ted with respect to forward speculation, are equally relevant for the
behavior of spot market speculators, since these may be interpreted as
forward speculators engaged in interest arbitrage.
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When sufficiently high safety margins are required by the banks, a
long position is advantageous to the speculator if the expected spot rate
exceeds the observed forward rate, and a short position is preferable in
the reverse case. Because of the preference structure implied by Weber's
law, the demand for forward currency reacts normally to a change in the
expected spot rate, that is, it rises when the expected spot rate increases.
An increase in the assumed variance around the expected spot rate leads
to a reduction in the speculative commitment, irrespective of whether
the speculator takes a long position or a short position.

If the safety margin required by the bank is not high enough to make
negative variates of the speculator’s gross wealth distribution impos-
sible, or if the bank itself engages in speculation, then these results may
not hold. The speculator may well prefer to risk an excessively short
commitment although his expectation of the future spot rate is above
the forward rate and although his preferences are characterized by a
concave von Neumann-Morgenstern utility function, This is another
implication of the BLoos rule.

The speculator’s demand for forward currency ceteris paribus s pro-
portional to his wealth. This wealth dependence is important for the
question of whether speculation has a stabilizing or a destabilizing effect
on the spot and forward rates, since, in the case of repetitive specula-
tion, current wealth is determined by the current level of the spot rate.
The wealth effect stabilizes if the speculation changes between long and
short positions, It destabilizes when a particular type of commitment is
maintained.

Section C
Theory of Insurance Demand

One of the most important and most obvious accomplishments of risk
theory is to explain why the insurance business is rewarding for both the
insurance purchaser and the insurance company. For this reason, the
situation of the insurance purchaser has frequently been used in this
book to illuminate the discussion!. Now an attempt is made to give a
more systematic and comprehensive analysis of insurance demand.
Section C | considers the determinants of insurance demand for given
risks and section C 2 extends the analysis to the case of endogenous risks
where Lhe household can decide not only, as usual, the optimal rate of
consumption, but also can choose between alternative loss prevention
policies and insurance contracts.

ICF. chapter I C 1.2, 1 C 1.3, and HIT B 1.1.
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1. Insurance Demand for Given Risks
1.1. The Basic Calculus of the Insurance Purchaser

The analysis of insurance demand for given risks begins by once again
considering Barrois’s (1834) problem of determining the maximum wil-
lingness to pay for a full-coverage contract. Then, the determinants of
the optimal degree of loss coverage are studied, a problem first
considered by BorcH (1961) and MossiN (1968b)2. The present contri-
bution to these problems is to extend the analysis to liability insurance
and to integrate it into the multiperiod approach.

The choice problem underlying both types of problems can be formu-
lated by a common approach. As before?, let ag denote end-of-period
wealth if the decision maker does not buy insurance and is lucky enough
to avoid any loss and let C, C=0, denote the possible loss which is a
random variable with finite density for all variates. Then the decision
maker’'s end-of-period wealth distribution without insurance is
V=aq—C. The proportion @ of losses is underwritten by the company
al Lhe cost vl a premium, payable at the end of the period, The premium
loading factor is £. Insurance brings about an improvement in the end-
of-period wealth distribution by the amount 8C and a worsening by
g E(6C) so that, in general, this distribution can be written as

(1) V=ag—-C(1—-0)-g8E(C).

The first question, which is obviously identical with the question about
the intensity of insurance demand (g) defined in chapter 11 1.3, now is:
suppose the decision maker can choose between #=0 and 8=1. How
large is the loading factor g =g, that he is just willing to accept? And the
sccond question is: which degree of coverage @ is chosen by the
insurance purchaser if a continuum of alternatives 0<#8<1 is available’

1 The problem was also discussed by ExrLicH and Becker (1972, pp. 625-633) and,
within a growth-optimum model, by HOFFLANDER, KENsHAW, and RENsHAW (1971).
Razin (1976) offered a minimax-regret solution, which is very different.

 Besides the ones considered below various other guestions have been discussed.
Hampuro and MaTtLack (1968) and St (1968) studied the problem of casuality loss
insurance. Aprow (1963, pp. 969-973), PASHIGIAN, SCHKADE, and MENEFEE (1966),
Mossin (1968b, pp. 561-563), Gourp (1969), HAEHLING vON LanNzZENAUER (1971), and
Haenving von Lanzenauek and WriGHT (1975) investigated the optimal level of de-
ductibles. A very extensive and general analysis covering various kinds of insurance is
provided by Arrow (1974b),

+Cf. chapter 11 C 1.2.

i The range 0 < f < | corresponds 1o the normal concept of insurance, for # < (0 means
that the insurance ‘purchaser” increases his risk and @ > 1 that he wrns into a gambler. In
practical insurance problems the possibility # > | cannaot always be avoided. The moral-
hazard problem arising from this possibility in the case of manipulable risks is discussed in
section C 2.1.3.
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and the insurance company predetermines the loading factor? The ques-
tions have in common the fact that they lead to an insurance demand
function, the first to a discontinuous function

Al [1. if g-::g}
0= F =
0, if g=g
and the second to a possibly continuous function @= 6(g).

To integrate the insurance problem into the multiperiod approach® we
have to think about how the opportunity locus described by (1) changes
over time. First, of course, the fact has to be taken into account that the
decision maker’s wealth, which gives an upper bound to the size of his
effective loss, equals the end-of-period wealth of the previous period
minus current consumption. Hence, wealth depends on the degree of
coverage chosen in the previous period as well as on the variate the loss
variable took on before. Next we must note that the wealth so deter-
mined will itself have some influence on the loss distribution. In fact,
often there seems to be a very close relationship beiween a person’s
property and the size of his possible losses. To depict this relationship in
a simple idealized form, it is assumed that the loss can be expressed as

the product of the decision maker’s wealth @ with an, arbitrarily distri-
buted, random ‘loss factor® F:

2 C=aF, F=l.
Equation (1) then can be written in the form
3) V=aQ, Q=q-F(1-6)-g0E(F),

and it turns out that (2) implies stochastic constant returns to scale.

Thus, important conditions underlying the multiperiod approach are
satisfied. For a full applicability of the multiperiod model, two further
conditions are needed however. The first is the stochastic intertempaoral
independence of the standard risk projects Q. It is satisfied if the loss
factors F are stochastically independent over time, as is assumed. The
second condition is that the opportunity set contains at least one alter-
native that with certainty avoids a complete loss of wealth. This condi-
tion is satisfied if full coverage insurance contracts that cost less than
the insurance purchaser's wealth are available. This obviously weak
condition is also assumed to hold.

The integration of the insurance purchaser’s decision problem into

SCf. chapter 1V B 2.
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our multiperiod approach is thereby accomplished. Accordingly, from a
long-run perspective, it is optimal to evaluate a wealth distribution

attainable at the end of the current period by referring to the preference
functional

(4) E{Ulag—C(1-6)-gPE(C)]}

where U(.) is one of the time-dependent Weber functions defined by the
measure of relative risk aversion &, However, as in the treatment of the

portfolio and the speculation problems, we again prefer to replace the
preference functional (4) by an equivalent” preference functional

(5) UIE(V), a(V)]

where

(6) E(V) = aq—E(C)(1-0)—-£6E(C)
=aq—E(C)-6E(C)(g-1)

and

(7) a(V)=(1-8a(C).

The properties of this preference functional were investigated in chapter
IIl B 1.2 and B 2. To ensure that the replacement does not imply any
loss of accuracy, it must be required that the end-of-period wealth dis-
tributions, attainable through a choice of @ in the open unit interval, all
belong to the same, arbitrarily choosable, linear distribution class. As
can be seen from calculating the standardized variable

@) z-Y-EWV)
(V)
_ lag—C(1 - 8) - gOE(C)] — [ag — E(C)(1 - 6) - §0E(C)]
(1-8)a(C)
_E)-C
T ac)

this requirement is met. Hence, with (5)-(7) we have a basis for finding
answers to the questions initially posed.

"The preference functionals (4) and (5) are identical up to a strictly increasing mono-
tonic transformation.



C Theory of Insurance Demand 299

1.2. The Maximum Willingness to Pay for a Full-Coverage Insurance
Contract

The maximum willingness to pay for a full-coverage insurance con-
tract divided by the expected loss is what we called the intensity of
insurance demand, g. It is implicitly given by the equation

&) Ulaq —gE(C), 0] = Ulag — E(C), a(C)]

which is obtained by setting alternately §=0and ¢ =1 in (5).

]

#H

aq
E(C)

Elag—C)
n(ag—C})
Slag—C)

Figure 13

The size of g can be graphically determined by inspecting Figure 13.
There, the end-of-period wealth distribution without insurance, ag— C,
is represented by point G. The corresponding level of end-of-period
wealth without loss, ag, is shown by point D, the expected level of end-
of-period wealth, E(ag — C), by point E, and the certainty equivalent of
the end-of-period wealth distribution, S(eq — C), by point F where the
indifference curve passing through G reaches the ordinate. The distance
DE measures the expected loss E(C) and the distance EF the subjective
price of risk m(ag — C). The intensity of insurance demand therefore igh

_n(ag-C)+EC) _ FD

10 s
e E(C) ED

In the figure, g > 1, since convex indifference curves were assumed.,
According to the results of chapter III (A 2.2, B 1.2, B 2) such a shape is

ECF. chapter 11 C 1.3,
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ensured if the loss cannot exceed the decision maker’s initial wealth,
that is, if the BLoos rule is not operative. This is necessarily the case with
property risks, but it may also occur with liability risks when the loss
disiribution is bounded from above.

Convex indifference curves, however, also occur in the case of an un-
bounded loss distribution if the standard deviation of losses is suffi-
ciently small, risk aversion is weak (¢ > 1), and the density at the upper
tail of the loss distribution converges at least as fast as that of a normal
distribution; such a constellation is possible for some types of small-
scale liability insurance.

If the decision maker is extremely risk averse (¢ = 1), then, in the casc
of loss distributions unbounded from above, there is a different picture.
In this case, even for the smallest positive levels of standard deviations,
the lexicographic aim of minimizing the probability of disaster comes
into operation. Accordingly, the decision maker would be willing to give
nearly all he possesses to enjoy the protection of a full-coverage
insurance contract. The intensity of insurance demand then is almost
g = aq/E(C), which could be enormous”®,

IT this case or the one described in Figure 13 prevails then a com-
petitive insurance market can operate. The insurance companies would
require a premium slightly above E(C) and almost all risk could be
insured, provided that both insurance purchaser and insurance com-
pany estimate the same equivalent objective probability distribution of
losses. (Even if this were not so, the strictly positive subjective price of
risk m would still provide some scope for mutually beneficial insurance
contracts.) Unfortunately however, in the case of liability risks, other
constellations are also possible. These will now be analyzed.

Let us assume, for this purpose, that the loss distribution C is
bounded from above and see how the intensity of insurance demand
develops if, starting from a situation of the kind depicted in Figure 13,
the loss distribution is subject to proportional extension or compression
given the level of normal wealth aq. An inspection of (6) and (7) shows
that a proportional extension reduces E(V) and increases a(V). To see
this more precisely write (6) as

_E((C)
(11) B(V)=aq - —=o(V),

where g(C) = o(V'). Note that the upper boundary k of the standardized

?Precisely speaking, the intensity of insurance demand is not defined in this case, since
the purchaser would be willing to pay any amount that is even minutely below his total
level of wealth, but not an amount cqual to this level.
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distribution (8) is reached just where C takes on its lowest variate 0. This
implies

(12) k= % :

Hence, (11) changes to

(13) EW)=ag - ka(V).

By graphing this equation it is easy to read the maximum willingness to

pay from the indifference-curve system appropriate to the level of risk
aversion we wish to assume.

i

aq

FIlC']'[
il

Elug—1C) = b

2

-/-l-'
L e

.
F / :
H/ |
/-\ \\Ei\(:aaq—ﬁg
X
0 1
a*

9 \\a{lf’r=1} (€)

Figuie 14

Consider first the indifference-curve system of Figure 11 in chapter
[1I B, which depicts the case of weak risk aversion (0 < &< 1). In Figure
14 this indifference-curve system and the straight line described by (13)
are plotted. As before, the maximum willingness to pay can be dis-
covered by finding on the straight line the point G which belongs to a
given o(C) = o* and by measuring the distance between the intercept D
of the line with the ordinate and the starting point F of the indifference
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curve passing through G. Since the vertical distance ED between D and
Cr is the expected loss, the intensity of insurance demand can be seen
directly from the diagram. Obviously it is given by the quotient FD/ED.
By carrying out this procedure for alternative values of ¢ a functional
relationship between the expected loss E(C) = ka(C) and the intensity
of insurance demand g can be established. A graphical illustration of
this relationship is given by the unbroken line depicted in Figure 15.
Because of the homotheticity of the indifference-curve system as
implied by Weber’'s law, there is not only a stable functional relation-
ship between g and E(C) for any given ag, but also between g and the
standardized expectation of the loss, E(C)/ag. The labelling of the
abscissa takes account of this fact.

i) ~. =1

E(C)
aq
F | =
free insurance free insurance
market market
possible impossible
Figure 15

The following properties of the function g = g[£(C')/ag] which are
also labelled in Figure 15 hold in general:

(1) g—1 for E(C)/ag — 0.

(2) g is maximal if E(C) determines point G on line (13) such that it is
situated on an imaginary hine connecting the points of inflexion of
the indifference curves. This is the case when the highest possible
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loss is already greater than the normal wealth @g so that the BLoos
rule is operative.

To prove these properties note that

_ tan < FGE + tan ¢ EGD
Bz tan < EGD 2

where tan < EGD = k = const. and

< dE(V)
0 da(V) |u=u@F
a‘i'

da(V)
tan 4 FGE =

According to this expression, the intensity of insurance demand is a
monotonically increasing function of the average indifference-curve
slope between the points F and G which is equal to the slope of the
straight line between F and G. (1) then follows directly from the fact
that all indifference curves enter the ordinate'? perpendicularly, which
implies risk neutrality in the evaluation of small risks. (2) is explained by
the fact that, with an increase in ¢* the average indifference-curve slope
is increasing as long as point G remains within the range of normal
indifference curves. This range, as is known, ends at a value of
E(V)/e(V) where the gross wealth distribution already partly overlaps
the negative half of the wealth axis.

(3) £< 1 obtains at a value of E(C)/ag < 1.
(4) g— 0 for E(C)/ag — c=.

The reason for (3) and (4) is that, for the insurance purchaser’s
maximum willingness to pay, there is an upper limit, smaller than the
normal wealth, which can never be exceeded regardless of the size of the
standard deviation and of the mathematical expectation of the loss dis-
tribution. In Figure 14 this upper limit is given by the distance DH for,
at A, the indifference curve, to which the straight line (13) is an
asymptote, enters the ordinate. The existence of an indifference curve of
this type follows from the facts that 1. the indifference-curve slope 1s
everywhere greater than —k (cf. chapter I1I B 1.1.2) but approaches this
value asymptotically as o(V')—* oo, that 2. the straight line (13) has the
slope (—k), and that 3. below the line (13) there are indifference curves
entering the positive half of the ordinate.

WO, expression (11 D 62).
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With this analysis of Figure 15, for an arbitrary linear distribution
class'! the proof has been given that the intensity of insurance demand
may be insufficient to allow for a contract profitable from the viewpoint
of the insurance company when there are large liability risks. A free
market for the insurance of large liability risks therefore cannot be
expected to operate, a result that is confirmed in practice. A good
example is automobile liability insurance in states where insurance is not
compulsory. There, many people are wont to buy comprehensive in-
surance, covering damage to themselves, rather than liability insurance,
covering damage to others.

The result summarized in Figure 15 was derived for the probably
realistic'? case of weak aversion ¢ < 1. In a similar way we can now study
the implications of the indifference-curve system that prevails in the
case £ = 1. For classes of wealth distributions bounded to the left such
an indifference-curve system is depicted in Figure 12 of chapter III B.
The result is a shape of the function g[£(C) /ag] as shown by the broken
line in Figure 15. Suppose the unbroken line and the broken line refer to
the same linear distribution class. Then the broken line also starts at
g=1, but for E(C)>0 it is always above the unbroken line. Provided
that the highest possible loss is less than the normal wealth, this follows
from the fact that, on given rays through the origin, the indifference-
curve slope is a rising function of the measure of relative risk aversion &
(cf. equations (111 A 53) and (III B 18)). If, however, the highest
possible loss can exceed normal wealth, then the reason is the lexico-
graphic preference ordering between v =<0 and v >0 implying that, if
necessary, the decision maker is willing to sacrifice nearly all his wealth
to obtain insurance protection'?. The intensity of insurance demand
then would be almost'* g = ag/E(C). Of course the intensity of insurance
demand even here will eventually fall short of unity when a(C) is suffi-
ciently large, that is, when E(C) > ag, but this does not seem to be a
very relevant case.

1.3, The Optimal Degree of Coverage

Suppose the decision maker has the opportunity of choosing the opti-
mal degree of coverage , 0 < <1, given the loading factor g. Then the

" For the special case of a linear class of binary distributions the proof was given in
chapter 111 B 1.1.

12 Cf, chapter Il1 B 2 (middle), chapter IV B 2.3.3, and section 1.4 that follows below,

1 The broken line in Figure 15 is assumed to make no jumps. This, however, is not a
general property as is evident from equation (I11 B 21). Instead, inthecase | = ¢ <2, thein-
tensity of insurance demand has to jump to the value ag/E(C) if p/a = k, i.c., if o= u/k,
and if the wealth density function is truncated at the left such that fi-k+)>f(-k-)=0.

HCF, footnote 9 above.
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decision problem can be illustrated as in Figure 16 which was con-
structed in a similar way to Figure 13. Figure 16 refers to the case of
convex indifference curves which is typical for property insurance but
may also be relevant for small-scale liability insurance.

!;h

LD
ay — gl E(C)).7

ag — E(C)
elif — E(Cy=1} EE(—IHF‘: =})

ay— E(C)g

Al

fi

a(C) o (V)
1 0.5 0

’_.n{(“]—trfi"l
=0

Figure 16

If the decision maker chooses 6=0, then, as before, the end-of-
period wealth distribution is represented by point G. But if he chooses a
higher degree of coverage, he achieves a distribution with a lower dis-
persion. This distribution is mapped somewhere on the line GI. The
properties of this line, call it insurance line, can be found by calculating
g in equation (7) and inserting the result into (6):

[U{CJ—U(V)

(14) E(V) = [aq - E(C)] - o(C)

EWC)g-1)]|.

The slope of the insurance linc is positive if the insurance company
requires a price above the expected loss (€ —1>0). An increase in the
degree of coverage @ in this realistic case thus not only brings the
advantage of a lower standard deviation, but also the disadvantage of a
reduction in the expected level of end-of-period wealth. The insurance
line ends at the ordinate for, if the highest possible degree of coverage
(6 =1) is chosen, the end-of-period wealth distribution degenerates to
the non-random value @ag — §E(C). In the usual way, the optimal distri-
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bution is given by that point on the insurance line which is situated on
the highest indifference curve. In Figure 16 this is the point of tangency
I. The corresponding degree of coverage can be read from the scale
plotted parallel to the abscissa, which embodies the relationship
B8=1-g(V)/0(C) from equation (7). The size of wealth in the absence
of losses, ag — §0E(C), is indicated by D', that is, by the point where a
parallel to 55, passing through 7, intersects with the ordinate.

An interior solution of the kind depicted in Figure 16 should be the
rule, but there may be other cases as well. [f #=<1, then the slope of the

insurance line is zero or negative and, because the indifference curves
cnter the ordinate perpendicularly, it is optimal o demand a [ull

coverage contract'’. Since the company normally requires a loading
factor g > 1, such a case can be observed in practice only if the pur-
chaser estimates the expected loss higher than the company does. For
the possibility of the other corner solution, no similarly simple condi-
tion can be given. At any rate, it is not likely that the insurance pur-
chaser would accept everything that the company offers. It was shown
that the indifference-curve slope at any point in the diagram is lower
than the slope of the corresponding ray through the origin'€, This aspect
implies that the insurance purchaser would not bother with insurance
protection if g is sufficiently close to ag/E(C), for, if § = ag/E(C),
point [in Figure 16 coincides with the origin of the diagram, that is, the
insurance line would be a straight line through the origin. So much for
the optimal degree of coverage for the range of convex indifference
Curves.

An extension of the analysis to the total range is first carried out for
weak risk aversion (0 <e< 1), where the indifference curves become
concave and take on negative slopes provided that the loss distribution
extends far enough beyond the level of normal wealth ag. Figure 17
illustrates an example of the decision situation where the end-of-period
wealth distribution without insurance is depicted in the abnormal indif-
ference-curve range.

In Figure 17 three alternative loading factors # have been assumed,
and accordingly there are three different insurance lines, GI', GI”, GI"™".
As in Figure 16, in all three cases, there are tangency solutions indicating

" This result was found by Mossis (1968h).

'¢In the limiting case j = ke when the lower bound of the wealth distribution coincides
with v =0, then, under strong risk aversion (g = 1), the slopes may be equal, i.e., we may
have

Cf. equations (11 A 49y and (111 B 21},
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local utility maxima. Compared to the normal case however, the special
aspect here is that the local maxima are not necessarily global maxima,
The point of tangency T does represent a global maximum. But the
maximum at point T” is not unique because this point is situated on the
same indifference curve as point G. If the loading factor g is increased
even beyond the value corresponding to 77, then the point of tangency
T is obtained. This point is on a lower indifference curve than point G
and hence the local maximum is not a global one: the optimal degree of
coverage ‘jumps’ to the value of zero.

o

: ™y

l_-:‘-‘:l--

Figure 17

The reason the local maximum does not necessarily coincide with the
global one is that, starting from zero, an increase in the degree of
coverage initially implies a decrease rather than an increase in utility.
With an increase in # the premium to be paid to the company always in-
creases in strict proportion. However, the additional protection bought
with each further unit of coverage at best is only partly beneficial to the
purchaser. Some part of the protection is useless to him since it simply
brings about an absolute decrease in the negative variates of the gross
wealth distribution. This decrease benefits those who, in the absence of
insurance, are endangered by the non-redeemable part of the liability
risk, but, because of the BLoos rule, it does not improve the insurance
purchaser’s net wealth distribution. Only when the degree of coverage is
high enough to prevent gross wealth from becoming negative, will an
additional unit of coverage fully benefit the purchaser and, despite the
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increase in the premium, increase his expected utility. Whether this
increase can offset the initial decrease is an open question.

Some information helpful in providing an answer can be obtained
from a comparison between the loading factor g required by the com-
pany and the intensity of insurance demand g. As with the all-or-
nothing supply on the part of the company, g < g is once more a suffi-
cient condition for making the purchaser prefer insurance. The reason is
simply that an extension of the opportunity set by the inclusion of
partial coverage contracts cannot prevent full coverage from being more
attractive than no coverage. However, unlike the previous case, § < g is
no longer a necessary condition for a positive insurance demand, for, in
the case g > 1, it is possible for a partial coverage contract to be attrac-
tive despite g > g. The reason is that the indifference curves enter the
ordinate perpendicularly and are convex in its neighborhood. Both
aspects ensure that there is some scope for insurance lines of the type
I’ G which, because of § > g, enter the ordinate below F, but which inter-
sect indifference curves that are situated above the one passing through
Fand G.

It could be thought that the possibility of the company’s requiring a
loading factor above the intensity of insurance demand reduces the
range in Figure 15 where a free insurance market is possible. But unfor-
tunately this is not the case. When g <1, so that a mutually advan-
tageous full coverage contract is impossible, the advantage of partial
coverage described above disappears. By inspection of Figure 14 it is
clear that there is no scope for insurance lines of the type /'G in this
case. It is true that, with £ > 1, partial coverage is still better than full
coverage, but, at the same time, no insurance at all is better than the
best possible partial contract, Thus the pessimistic impression that
Figure 15 gives concerning the possibility of a free insurance market for
large liability risks is not dispelled when partial coverage contracts are
possible. So much for the case of weak risk aversion,

If. with £=>=1, there is strong risk aversion, then a completely
different picture appears. Bocause of lim, ., U(v) = —oe, the decision
maker tries in this case to avoid the total loss in wealth regardless of the
price. For a loss distribution unbounded from above, this aim requires a
coverage of 100%, but if we realistically assume that the loss distibu-
tions are bounded, smaller degrees of coverage will be sufficient. Say
that the standardized loss distribution is bounded from above at & and
hence the standardized end-of-period wealth distribution is bounded
from below at —k. Then all degrees of coverage that, in the (u g)
diagram, lead to points to the left of the line E(V') = ka (V') satisty the
decision maker’s lexicographic aim, From (6) and (7) we can therefore
calculate a lower boundary to the degree of coverage:
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(1) — E’E{CHE(C]taq _
ka(C)+E(C)-gE(C)

The degree of coverage # that should be chosen in the range 8* <= 6= |
can casily be determined. If £=1, it is at any rate optimal to buy full-
coverage insurance'’, but, in the realistic case g>1, the degree of
coverage must always be in the range #* < # < 1. It is worth noting that,
contrary to what is suggested by the normal shape of a demand curve, ¢
is not a monotonically falling function of the loading factor g. It is true,
the convexity of the indifference curves and their zero slope at the
ordinate imply that, when g increases slightly heyond 1, there is a fall
from 8 =1 to @< 1. But, since (15) gives

(16) lim 6*=1,

8= aglE(C)

the degree of coverage ultimately has to increase again.

If people were usually as risk averse (¢ = 1) as was just assumed then
we need not fear that a lack of demand will impede the liability
insurance market. But probably the case of strong risk aversion is not a
very relevant one. Why that is so is shown in the following section.

1.4. The Age Dependence of Insurance Demand

The basic multiperiod model established in chapter [V B implies that
risk aversion depends on age. Equations (111 A 53) and (IIl B 18) say
that, with an increase in the degree of relative risk aversion g, the slopes
of the non-pseudo indifference curves rise at each point in the (u, )
diagram'®1%, It is straightforward to interpret these pieces of informa-
tion for the insurance problem.

If &£ > 1 so that risk aversion decreases with age then, with the passage
of time, there is a decrease

- in the intensity of demand for an insurance of property risks
- in the optimal degree of coverage if initially there was a tangency
solution with 8 = 0.

The intensity of insurance demand for liability risks which are large
enough to include the possibility of ncgative gross wealth is unaffected,

17 Provided that E{C) < ag. Otherwise, in the multiperiod approach, the optimal degree
of coverage may not exist,

1€ Except at the ordinate.

19We forgo the proofs for the results reported in what follows.
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for, as long as £ = 1, the decision maker is always willing to give away
almost all his wealth in exchange for insurance protection.

If, however, the case £<1 prevails, where relative risk aversion
increases over time, then there is a gradual increase

- 1n the intensity of demand for an insurance of all kinds of loss distri-
tion

- in the optimal degree of coverage if initially there was a tangency
solution with € <1,

For completeness it should he mentioned that, in addition to the pos-
sibility of a continuous increase in the degree of coverage for interior
solutions, it is also possible for # to jump from zero to some positive
level. For this jump to occur, a local maximum must change into a
global one when initially there is an insurance line like I G in Figure 17.

According to everyday experience, and also according to a poll
carried out by GrEENE (1964, cf. exp. p. 36), risk aversion increasing
with age seems to he the normal case. Thus, we must consider weak risk
aversion (£ < 1) to be the standard case and unfortunately state that the
doubts concerning the workability of the liability insurance market gain
additional weight?’,

2. Insurance and the Size of Risk

With an analysis of insurance demand for given risks only one aspect
of the economic meaning of insurance has been elucidated. The other
one, which is probably even more important, 1s the insurance-induced
change in people’s behavior that alters the sizes of the risks underwritten
by the companies?'.

[t is well known that, after buying an insurance contract, people tend
to become very careless, sometimes even going so far as to destroy the
insured object deliberately. Insurance may however also induce people
to stop undertaking risky activities. We shall see that this possibility
arises if comrulsory insurance is introduced for liability risks. In what
follows, such changes in behavior will be studied. Section C 2.1 analyzes
the allocative effects of insurance under ideal conditions, section C 2.2
considers whali is calle.! reproachfully moral hazard, and section C 2.3
examines the allocative implications ot insurance in the case of hability
risks when the BLoos rule is operative.

1T, Figure 15 above,
2l The present section draws heavily on previous work by the author. See Sinw (1977,
1978). However, by analyzing liability risks this study goes further.
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2.1. The Insurance-Induced Substitution Effect under Ideal
Conditions

If insurance canses carelessness in dealing with risks, misallocation
would appear to be present, but appearances can be deceptive. In fact,
the appearance of misallocation arises from a misunderstanding that we
now attempt to remove®. .

We consider simultaneous decisions about th= optimal degree of in-
surance coverage and about activities that influence the size of the risk
to be insured. Such activities include the installation of sprinklers or
burglar alarms, the use of fire-proof materials, the purchase of safes,
and many others. The activities have two things in common, first, they
bring about costs (b) which reduce the level of end-of-period wealth
even if the decision maker is lucky enough to avoid any damage and,
second, they reduce the levels of loss for given probabilities and reduce
the probabilities for given loss variates?, The set of all end-of-period
wealth distributions attainable through such manipulations is denoted
the original opportunity set (M). Assuming this set contains only distri-
butions which belong to the same lincar class, we can meaningfully
depict it in a (y, o) diagram. Figure 18 shows an example.

For each point in M there is a downward sloping ray like DG con-
necting this point with a point on the ordinate which indicates the cor-
responding level of normal wealth net of prevention costs, (@ — b)g. The
significance of this ray is the same as that of the identically labelled rays
in Figures 13, 14, and 16. Formally the ray is described by the equation

(17) EWV)=(a—-b)qg-ka(V)

which is similar to equation (13) above. By the assumption of a linear
distribution class there is the same & for all distributions from M and
hence all rays are parallel to one another. This property permits an
interesting comparison of those distributions that are plotted on the
upper boundary of the opportunity set. Let P denote that point where
the highest possible ray is tangent to the opportunity set and let the
point where this ray reaches the ordinate indicate the level of normal
wealth (a — b)g achieved with & =0. Then, left of P, a movement to the
right reduces loss prevention costs b, but raises the expected loss £(C)

2111 seerns that, e.g., Grugsgel's (1971) study is not completely free from this misunder-
standing.

BExrLIcH and Becker (1972) call the former ‘self-insurance’ and the latier ‘self-
protection’. Although these possibilities have a clear meaning for the binary distributions
considered by these authors they may be indistinguishable in the case of multivariate dis-
iributions.
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and the level of risk o(V). Such a movement, therefore, represents the
mtuition behind the above examples. At point P, a further reduction in
loss prevention activities is impossible. To reach the region to the right
of P, it would be necessary for the decison maker to bear costs if he tried
to enlarge the loss distribution beyond its ‘natural® shape.

The opportunity set depicted in Figure 18 refers to the current choice
problem of the decision maker that we are going to analyze. Similar
opportunity sets are available at all later points in time up to the
horizon. In line with our basic multiperiod approach, it is assumed that
these opportunity sets satisfy the requirement of stochastic constant
returns to scale. To illustrate this requirement suppose that, by chance,
at the beginning of the next period wealth net of consumption turns out
1o be half as large as in this period. Suppose also that in the next period
a particular type of prevention policy as represented by a point in M is
chosen. Then the prevention cost & as well as the loss associated with
any variate of the loss factor F from (2) is half as large as it would have
been had wealth not changed.

For the time being it is assumed that, at least in the current period, the
opportunity set does not intersect with the range of abnormally sloped
indifference curves where the BLoos rule is in operation. This assump-
tion will be removed in section 2.3.

Without insurance the decision maker’s optimal choice is point § in
Figure 18. The question is how this choice is affected if insurance
protection is available for all elements of the original opportunity set.

To Iind an answer we first have to find out how the original oppor-
tunity set is enlarged when insurance is possible. Assume that partial
coverage at a degree @ in the range 0 = 6 = | is allowed and that the com-
pany practices equivalence rating. It monitors all loss prevention activi-
ties of the purchaser, reckons with the same probability distribution of
losses as he does, and sets a premium loading factor £ > 1 to ensure that
the premium required is above the expected loss underwritten. Under
these conditions, for each point in the opportunity set M, an insurance
line of the kind introduced in Figure 16 can be constructed.

There is then a twofold decision problem for the potential purchaser.
First he has to determine the best choice from M, thus deciding on a par-
ticular one of the possible alternative insurance lines. Then, in the usual
way, he has to determine the best point on this insurance line by
choosing an appropriate value of 8. Analytically, the first part of the
problem can easily be solved. Replace in equation (14) ag by (¢ —b)g
and calculate the slope

dE(V) - E(C)
da(V) oa(C)

(18) (&£—1),
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of an insurance line. Since the prevalence of a linear distribution class,
as with (12), implies E(C)/c(C)=k=const. it turns out that all
achievable insurance lines are parallel. This fact ensures that there is one
insurance line that is unambiguously the best. Obviously it is the highest
one. 1

In Figure 18 this line is labelled JG. It is tangent to the opportunity set
M at point G and terminates at this point. On this line, the best point
which indicates the end-of-period wealth distribution generating the
highest level of expected utility is the point of tangency 7 with an indif-
ference curve. It corresponds to point T in Figure 16.

u
aq

(a—b)q| D

(a—b)q —E(C)

(a—b)q —E(C)Z

Figure 18

An interesting aspect of this optimization procedure is that, as with
Tobin’'s Separation Theorem for portfolio analysis, the choice of the
best distribution from M, i.e., the choice of the optimal loss prevention
policy, can, to a large extent, be made regardless of the decision maker’s
preferences®. The preferences merely determine whether or not
insurance is demanded at all. Obviously, a positive demand occurs if,
and only if, the slope of the insurance line is smaller than the indif-
ference-curve slope at point S. Provided a decision for insurance

2With o different approach a similar result was achieved by EHrLICH and BECKER
(1972, pp. 6361.).
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demand has been made, the only ‘task’ of the preferences is to deter-
mine the optimal degree of coverage. They do not affect the position of
point G and hence do not affect the loss prevention policy of the
insurance purchaser.

Up to now, it was assumed that partial coverage is possible. It may,
however, also be of interest to consider the possibility that the insurance
company makes an all-or-nothing offer (8 =0, #=1). Although in this
case only the end points of the insurance lines are relevant, the highest
insurance line clearly remains the best one. Thus, as with optimal partial
coverage, the loss prevention policy represented by point G in Figure 18
is chosen if insurance is bought. Whether insurance is bought, however,
no longer depends on the slope of the insurance line being below the
indifference-curve slope at point . Instead a positive demand requires
the stronger condition that the best, i.e., highest, insurance line enters
the ordinate (point 1) above point H which is on the same indifference
curve as §. Concerning the choice of the optimal loss prevention policy,
this is the only change compared to the partial-coverage case.

Initially a promise was made to remove a misunderstanding con-
cerning the allocative effects of insurance. The time has now come to
keep it. It was shown that, with the purchase of insurance, a movement
from § to G takes place, that is, a shift to the right along the upper
boundary of the original opportunity set. Indeed, this type of shift is a
general feature since the slope of the optimal insurance line is, of
necessity, lower than the slope of the upper boundary at the initial point
S. The result clearly confirms the initial conjecture that, with a purchase
of insurance, people become careless about preventing losses. Loss
prevention cost & is falling with the consequence that there is a rise in
both the expected loss E(C) and the level of risk a(V).

Contrary to first impressions there is nothing in the result that allows
us to blame insurance for causing misallocation. Suppose, because of
government controls or of competition, the premium loading factor
required by the company is just sufficient to compensate for the burden
of the indemnification claims. Then, with the insurance purchaser’s
choice, a Parcto optimal situation is reached, given the kinds of con-
tracts described. The reason is that by assumption the company is indif-
ferent to this choice while the purchaser cannot reach a higher indiffer-
ence curve than the one resulting from his own decision. In particular,
the decision maker would be comparatively worse off if he did not
change his loss prevention policy and merely chose the best point avail-
able on the insurance line passing through point® S. From an allocative

43This line has not been plotted in Figure 18.
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point of view, the reduction in care is a desirable outcome of insurance.
To reduce the risk by pooling is cheaper than to reduce it through expen-
sive protection measures®,

It is not difficult to find examples for the favorable allocative effects
of insurance. One very striking example was the development of insur-
ance in medieval Venice?”. A Venetian merchant who sent a ship to
foreign harbors was engaged in a risky business, since he often lost both
ship and cargo. Thus, for a long time, the risk was prohibitive and the
journeys went no further than the neighboring coasts. But at some point
it proved advantageous to shift the burden of risk on to the shoulders of
speculators who could consolidate risks by employing the Law of Large
Numbers28, This increased the Venetian risk bearing capacity to such an
extent that merchants were able to venture much further and the
Venetian fleet came to dominate the whole Mediterranean.

2.2. Moral Hazard

The set of problems that lie behind the concept of moral hazard has
been the subject of intensive discussions in insurance theory. What the
concept means is an insurance-induced change in the purchaser’s be-
havior that is to the disadvantage of the company and ultimately also to
himself. The behavioral change may be to exploit the contract beyond
what was intended or may involve insurance fraud as, for example, in
the case of deliberate destruction. At any rate, the concept suggests
what is ordinarily regarded as dishonest behavior?,

Rather than just pointing a moral finger, we should try to find an
economic explanation for the observable fact that, when insurance pur-
chasers make rational calculations, allocation patterns emerge that are
different from the one described in such favorable terms in the previous
section. In principle there seem to be three categories of economically
motivated moral hazard: deliberate destruction of the insured object,
too much demand brought about by the cost-compensation principle,
and excessive carelessness associated with community rating. All three

26 Although this result by no means coincides with the usual view of the allocative
effects of insurance, it was anticipated by Manr (1951, esp. pp. 881. and 9! f.) and
Arrow (1970, pp. 137 1.). Implicitly, it is also contained in the article by EHRLICH and
BECKER (1972, esp. pp. 636 F,). For a contrary view typical among insurance brokers see
SLANEC (1972, pp. 16).

7 Cf. PERDIKAS (19606).

28 Cf. chapter IV A,

2? An overview of the moral-hazard literature with particular emphasis on the definition
of moral hazard was given by Mang (1972). Perhaps the first analysis of the moral hazard
problem was provided by Havwes (1895, pp. 4451.),
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categories will be treated in what follows. The first two are only
indirectly related to a risk problem. They are, nevertheless, considered
here because they can help in sorting out and understanding the third
problem as well as the insurance-induced behavior change considered in
the previous section.

2.2.1. Deliberate Destruction of the Object [nsured

This type of moral hazard is the most obvious one. The insurance
buyer can profit from a deliberate destruction of the object insured or
by worsening existing damage since the payment from the company
overcompensates for the loss. Arson is a well-known example. By the
end of the last century Haynes (1895, p. 445) reported that, in the
United States, 35-50% of fire insurance damages were due to arson.
Today also, the increase in the damages caused by fire during recessions
can bec explained this way. Of course this effect indicates a clear mis-
allocation. If all the insured behaved this way, each would obtain a
compensation which could not exceed his premium, but the objects
insured would bc destroycd. Fortunately, however, there is a very
simple way of avoiding this misallocation. The company only has to
take care that no loss is covered by more than®® 100%. This might be
difficult in practice, but it does not seem to be a theoretical problem.

2.2.2. The Excess Burden of the Cost-Compensation Principle

In this section we study an insurance-induced behavior change which,
unlike insurance fraud, is of great practical importance, [ts essence is
that there is an inflated demand for repairs in the case of damage, or for
medical attention in the case of illness®'. The example of the insured car

WO, HAvNES (1895, pp. 445 1.), FisHEr (1906, pp. 294 f.), and Arrow (1970, pp. 142
and 148). Another type of insurance where there is an incentive for deliberate destruction
is the one where a persan makes a contact that provides him with indemnificaion pay-
ments when someone else is damaged. Here the insured person can make a gain of the
difference between the insurance value and the premium, if he causes the damage to the
third party. Fisser (1906, pp. 294-295). for example, reports the so-called ‘praveyard
insurance’ which was possible in the United States. Basically it was to take out an insur-
ance contrael on the lives of other people. It is not difficult to imagine the gruesome form
insurance fraud tock on with this kind of insurance. The judgement of its allocative value
is of course also obvious. Fortunately, this type of insurance has no practical importance
today since it is forbidden by law in most countries.

YTheoretically this seems to have been analyzed first by Pauiy (1968). Cf. also
ZECKHAUSER (1970}, SPENCE and ZECKHAUSER (1971), GruBktL (1971), FELDSTEIN (1973),
and RoseTT and Huan (1973), As far as these authors are concerned with the welfare loss
of the cost-compensation principle, their approaches can be eriticized since they calculate
the loss in terms of consumer rents. The indifference-curve analysis utilized here avoids
the strong assumptions necessary for such a calculation.
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owner who has his whole car sprayed at the company’s expense, al-
though there is only a small scratch, and the housewife who every
month must have her cosy chat with the doctor are certainly familiar.
Less familiar to many readers may be the fact that in West Germany
there are more than 250 spas that depend for their existence on the
generous support for rest cures provided by the insurance system?*. In
all these cases, the reason for an excessive demand is that the insurance
companies do not pay unconditional money compensation as was im-
plicitly assumed up to now, but make the compensation dependent on
the costs of repairs or recovery, even sometimes paying the whole of
these costs.

The decision problem of the person insured in the case of damage can
be illustrated with the aid of Figure 19, which shows an indifference-
curve system for goods x and y, where x measures the number of repairs
units and y the person’s wealth, which is a quantity index of all the other

Figure 19

¥ Here, tno, an idea of the importance of moral hazard can be gained by considering
the relationship between the number of insurance claims and the level of employment. For
cxample, in West Germany, from winter 1974 to winter 1975 (recession) the number of
rest cures in the famous government spas Oeynhausen and Meinberg fell by 21% and
10%, respectively. The reduction was probably only caused by members of the private
work-force, for the number of government employees applying for financial suppori
{Beihilfe) for rest cures during the same time increased by 4%. A further indicator of the
importance of moral hazard is that the demand of government employees was not only
more stable than that of private employees, but was also higher. For example, in 1974,
11% of the employees in the Ministry of the Interior took their rest cures, but only 4% of
all members of the social insurance system including government employees did so. Cf.
PieL (1976},
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goods he consumes now or in the future. The indifference-curve system
1s contingent on a particular insurance damage having occurred. As
usual the indifference curves are assumed to be convex. Before having
any repairs made and before receiving compensation from the com-
pany, the decision maker is at point A. If he has repairs made without
being compensated for any of the cost, then he can move along budget
line BA , the position of which is determined by the constant competitive
price of a repairs unit*?

(19) P,= OA/OB

and wealth OA. Things are different if the company pays back the share
@ of the documented costs, In this case, the cost compensation principle
reduces the net price (P, ) for the insured to

P,=(1-0)P,=0A/0C (20)

with 8 = BC/OC, so that the budget line moves to the new position AC.
Now, on this line the person insured chooses the commodity bundle T3,
which implies that the company pays the amount of money AG**,

Unfortunately the choice of the bundle T;, which is optimal from the
viewpoint of the person insured, indicates a clear misallocation. Had the
company paid the amount 4G unconditionally, then the insured would
have chosen the bundle 7; which represents a higher utility than T;.
Conversely, if the company had not linked the compensation payment
to the repair costs, then it could have saved the amount EG without
making the insured worse off, The reason is that the person insured
would then have chosen the bundle 75 which he likes as much as the
bundle T7;.

The useless excess costs EG are undoubtedly a burden on the insur-
ance market. In general, when the BrLoos rule is not in operation, a risk
averse insurance purchaser should be willing to pay a premium beyond
the expected monectary indemnification payment from the company,
provided that this payment is unconditional. In order to make this result
applicable if the person insured is indemnified according to the cost-
compensation principle, we can transform the probability distribution
of the company's payments into an equivalent distribution of uncondi-

3311 is assumed that the transformation curve between the repairs commodity and the
bundle of other commodities can be linearly approximated in the relevant case,

¥ Note that U__G where G is the intersection with the abscissa of a budget-line through
T, parallel to BA, measures the monetary value of the bundle represented by 7, but that,
after the damage, the insurance purchaser’s wealth was only O,
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tional payments. Then, of course, the fact that the insurance purchaser
would be willing to pay a premium in excess of the mean of the latter
distribution, by no means indicates that he would also be willing to pay
more than the mean of the former distribution, as the company would
require.

The allocative evaluation of the cost compensation principle is
obvious, since the excess cost £G induced by this principle is nothing
but a pointless waste of resources. Whether insurance, despite this
excess burden, causes a net welfare gain is a question which can only be
answered by the insurance market itself. If a free insurance market
exists, there must be a net gain for at least one of the parties. In the light
of this, public compulsory insurance must be regarded sceptically.
When it uses the cost-compensation principle, it may well bring about a
net loss in welfare.

Where it is practiced the cost-compensation principle should be
abandoned, except where repairs are a merit good or produce positive
external effects, as might be the case with health insurance. One must,
however, be careful to see that, in this case, the decision maker is no
better off after the damage than before since this would induce insur-
ance fraud as discussed above. So, for example, in the case of full-
coverage insurance a change in the compensation principle has to be
accompanied by a reduction in the indemnification paymenis by the
company, which, of course, makes it possible to reduce premiums, 100,

2.2.3. The Optimal Loss Prevention Policy under Community Rating

The third type of moral hazard is more subtle than the other two, but
is nevertheless of great importance. Only this type is inseparably con-
nected with insurance and creates insurmountable barriers. We thus
need to consider it in detail.

The problem of community rating leads us back to the framework of
section C 2.1 where the substitution effect of insurance under ideal con-
ditions was studied. An assumption underlying that analysis was that
the insurance company exercises equivalence rating. It can monitor the
loss prevention policy of the purchaser and can adjust the premium it
requires accordingly. Obviously, with this assumption, the quality of
the company’s information was seen in a too favorable light. In reality,
the purchaser always has some scope for manipulating his risk without
the company's knowledge. This scope is the third source of moral
hazard®.

i3 Related approaches have been chosen by SPENCE and ZECKHAUSER (1971, p. 383) and
Paury (1974). Cf. also ExriicH and Becker (1972, pp. 642 1.0, Seinn (1972), HELPMan
and LarronT (1975), MarsHALL (1976), and EiSEN (1976). A practically oriented study is
given by MENGES (1970, esp. pp. 1091.). For the related problem of the workability of an
insurance market with non-homogeneous risks of. also PauLy (1970) and AxerLor (1970).
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To see the prablem clearly, let us first assume that the insurance com-
pany has no possibility of monitoring the loss prevention policy of the
purchaser at all. Thus, independently of the distribution the decision
maker chooses from the original opportunity set M (see Figure 18), the
company has to determine a premium g per unit of coverage 6. It prac-
tices community rating. To illustrate this case graphically would not be
very illuminating. So, an algebraic treatment is used. For this purpose
the following notation is introduced:

L, Oy expectation and standard deviation of a particular end-of-
period wealth distribution from M,

li¢c, 0 expectation and standard deviation of the loss distribution
belonging to uys and Gy,

fic the insurance company's estimation of ug,

uy, oy expectation and standard deviation of the end-of-period
wealth distribution the insurance purchaser faces when
choosing uy, and o, and buying the proportion # of insurance
coverage.

The definitional equations of the distribution parameters in which the
insurance purchaser is ultimately interested are given by (cf. (6) and (7))

(21) Uy = s + B pe — Biic)
and
(22) oy =(1—-0)oc.

It is worth-while making some transformations in both the equations.
Note first that o = 0y, and, because of (12), ur = ka-. Now, define a
function g@,,(g,,) that represents the shape of the upper boundary of M
in Figure 18; for simplicity it is assumed that d,,(g)s) is twice differenti-
able with a;,(as) <0. Moreover, define a function fi¢ = fic(uc) which
expresses the relationship between the expected loss as calculated by the
purchaser and as estimated by the company. With gde(uc)=1 this
allows the ideal case considered above to be depicted. With G- (uc) =0
it reflects the case of community rating considered here. Then (21) and
(22) can be written as

(23) ity = jiyg (apy) + Olkoy, — Efic (ko))
and

(24) ay =(l —E}ﬂ'”.
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These equations demonstrate that the parameters uy and oy of the
decision maker’s end-of-period wealth distribution V' depend on two
control variables: on the degree of insurance coverage # and on gy,
which indicates the loss prevention policy. That g,, determines the loss
prevention policy, although, given gy, the opportunity set allows for
alternative uys values, is caused by the possibility of eliminating as
inefficient all distributions that map below the upper boundary of M.
Suppose for a moment that f,,(a,,) is not a function but a correspon-
dence that associates o), with a set of alternative values of u; and con-
sider equations (23) and (24). Since, given gy and given §, there is a
given value of o, the highest value of uy; is obviously the best one;
whatever value is given to #, the highest value of g, leads to the highest
possible value of .

The aim of the decision maker is to optimize his end-of-period wealth
distribution by a suitable choice of # and a,,:

@5) ik s ) iﬁ =0,0=1 [all-qr-nothng supply)
(EL O=P=l (partial coverage allowed).

Utilizing the relationship

_QU(.)/day _ duy
aU(.)/duy, doy

L

we can calculate from (23)-(25) the necessary conditions for a maxi-
mum. From dU/day; =0, we have

B duy
(26) ﬂj«;{ﬂmhﬂf(l —g‘—‘-‘ﬁ) =22 (1-9)
aﬂf dﬂy £y
and, from dU(.)d@ =0,
M duy
(27 E( — — 1) - — ;
) gi“(f doy Ui.)

While both conditions have to be satisfied in the case of partial
coverage, in the case of an all-or-nothing offer of course only the first is
relevant. After inserting (27) into (26) and carrying out some elementary
manipulations we combine both conditions to
afir i
(28) ﬁﬁ,,(crm}=9f('a—#—t-—1)+(1—6‘}E(§%—]), >0,
"

MHc
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By construction, this condition must be satisfied in the case of partial
coverage. A comparison with (26), however, reveals that, in the special
case § = |, it coincides with the condition (26) of optimal behavior in the
all-or-nothing case. Hence (28) contains all the information needed to
find out which loss prevention policy the insurance purchaser chooses
under the kinds of contracts we consider.

Assume first Ay, /ups = 3/ips /3pps = 1 which is the case of equivalence
rating that was considered in section 2.1. Then, from (28), we get the
condition

(29) fnloy) =k(€-1).

Referring to Figure 18 in connection with equation (18) we found above
that the optimal loss prevention policy is given by the point of tangency
between the upper boundary of the opportunity set A and an insurance
line. This result is confirmed by (29).

The question now is which change in the loss prevention policy is
brought about by switching to the hypothesis dfic/du- = 0. The answer
partially depends on whether, with fi-/u-> 1, the insurance purchaser
takes less care than the company expects, whether, with fe /U< 1, the
company is too optimistic, or whether the intermediate case e/ e =1
prevails. The latter seems to be a particularly interesting case.

Let there be a large number of insurance purchasers endowed with
identical preferences and identical time-invariant opportunty sets of
standard risk projects Q, but not necessarily identical wealth. Assume
that, in addition to @, the company is able to monitor the decision
maker’s wealth so that it knows the opportunity set M from which a
particular purchaser chooses. Then, with stochastic independence
between the risks of the single purchasers, the company will be able to
calculate from the observed sum of losses a correct estimation fe = HUr.
Contrary to what might be supposed at first, this does not mean that, in
(28}, we have to set dfic/duc = 1. If the single insurance purchaser de-
cides for himself, independently of others, to change Oy, then, because
his risk is negligible in the total portfolio of the company, there is no
way that he can alter the company’s rating system. Hence 0fi-/u-~=0
has to be maintained in (28) despite employing the equilibrium condi-
tion fir = uc-. Instead of (29) we therefore have

(30) (o) = k(€ -1) - 6kg.

A comparison between this expression and (29) reveals the outcome
of community rating, If insurance is demanded at all, then the decision
maker chooses a point on the efficiency boundary fp(a,. . of the
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original opportunity set M where this boundary has a lower slope than
at the point chosen under equivalence rating. The difference in slopes is
greater, the larger the degree of coverage, regardless of whether the
buyer could choose this degree or whether the company dictated it.

In section C 2.1 the allocation described by (29) was identified as
being Pareto optimal. This already implies that the different allocation
as given by (30) must bring about a welfare loss. This loss is illustrated
in Figure 20. There, two insurance lines are shown. The upper one, GT,
which is tangent to the original opportunity set, is chosen in the case of
equivalence rating, the lower one, G'T’, under community rating. Both
lines have the same slope since, for the reason given above, even in the
absence of direct control the company knows the size of *® u-. Assume,
as in the discussion of the substitution effect of ideal insurance, that,
independently of the insurance purchaser’s choice, the company is just
compensated for the burden it takes on and is therefore indifferent to
the insurance buyer’s action. Then, the utility loss illustrated in the
figure, which the purchasers suffer when the allocation changes from T
to T, is a clear deterioration with regard to the Pareto criterion.

My

Tpgs Ty

Figure 20

The shift from & to G’ in Figure 20 1s a shift towards a higher level of
expected end-of-period wealth. To denigrate this as suboptimal may not
sound very convincing. It could wecll be argued that, from a macro-
economic point of view, a maximization of expected end-of-period

-—

3 The equality of slopes follows from cquation (14) but may also be calculated from
(23) if & is replaced according to (24) and account is taken of g = ur = Key.



324 Areas of Application \'

wealth is optimal, a solution approached more by G’ than by G. This
argument could be supported by the supposition that, at least theoreti-
cally, all risks could be pooled so that, for the welfare of the com-
munity, it would be best to base the choice on the mean-value criterion.
The weakness of this argument, however, is that it neglects the possibly
prohibitive administration costs of such a solution and that it lacks an
explanation of why a choice similar to that under perfect pooling should
be made if a consolidation of risks is not actually carried out®’.

Apart from this, the doubts concerning our result do not have a solid
basis since an increase in the expected value uy is not a general feature
of the movement from & to G'. Assume, for example, that, because of
the absence of administration costs, the company only requires a
unitary loading factor, g = 1. Then, according to (29), ¢ 1s at the maxi-
mum of the original opportunity set and the switch from equivalence to
community rating cannot bring about an increase in uy-. As is known, in
the case & = | the insurance line is horizontal so that the optimal degree
of coverage is 100% . Because of (30) this implies

(D () = —k.

Hence, indeed, G' must be to the right of and below G. In this particular
case community rating brings about a comparatively smaller expecta-
tion of end-of-period wealth than equivalence rating does.

Condition (31) defines a point on the upper bundary of M where the
slope is —k. From the discussion of Figure 18, it is known that such a
slope characterizes point P where the highest auxiliary line of type DG
reaches the opportunity sect, indicating that P brings about the highest
level of normal wealth net of prevention costs, i.€., the highest level of
(a — b)q. This aspect very clearly illustrates the fact of misallocation: if
the insurance purchaser is forced to take full coverage insurance or if he
chooses it himself then, under community rating, he completely neglects
loss prevention.

Up to now, only the question of which loss prevention policy is
chosen {f insurance is bought has been examined. Whether insurance is
worth-while at all for the purchaser has not been considered. A simple
answer to this question does not seem to be available, but a comparison
with the case of equivalence rating shows that community rating reduces
the scope for gains from contracting significantly. Consider Figure 20
once more. There, the question of whether, for ¢ sufficiently high, the
indifference curve which is tangent at 7' enters the opportunity set was

371n a similar form the problem was discussed in the famous welfare-theory debate on
compensation criteria by Kaldor, Scitovsky, and Samuelson.
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I

Figure 21

left open. If it does, insurance is not worth the price. It would be
cheaper for the decision maker to ‘insure’ himself by choosing that dis-
tribution where the highest indifference curve is tangent to the original
opportunity set.

The result sheds doubt on a proposal by Arrow (1963) that risks not
covered by private companies should be covered by compulsorary
government insurance®®3%. If, as we would expect, the government is
unable to control the individual’s actions completely, then, even if fair
premiums are required, there is no guarantee whatsoever that insurance
brings about a net gain for the people as a whole.

In Figure 21 a situation, not necessarily unrealistic, that could be
called rhe dilemma of the welfare state, is shown. It is assumed that the
members of a community of identical individuals are obliged to buy full
coverage insurance and that the government demands a premium which
is just enough to cover the observed average loss. Under these assump-
tions, everyvone chooses the distribution P which is characterized by a
complete absence of loss prevention efforts. So, the individual has done

W With reference to the moral-hazard effect caused by the cost-compensation principle,
Arrow's proposal was criticized by Paury (1968). CT. also Lees and Rice (1965), who
pointed out that government cannot avoid the administration costs that may prevent
market solutions coming into existence.

W Arrow recognizes the general problem of moral hazard, but does not find it parti-
cularly important. A similar view is cxpressed by Mavisvaup (1969, p. 239).
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the best from his personal point of view, but, since all losses eventually
have to be borne by the community, premiums, or taxes, must be so
high that each citizen ends up with the non-random wealth Of'. This he
clearly likes less than the probability distribution S, which he would
have chosen without compulsory insurance*’. Of course, it would be
best for the community as a whole if each of its members were to choose
a loss prevention policy which makes his original expected wealth maxi-
mal, but, unfortunately, people seem to lack the collective rationality
which would be necessary if they were to behave in this way.

This pessimistic view of insurance under community rating is just a
possibility. Of course it is also possible that there will be a net gain from
insurance in the case of community rating. Ceteris paribus, the greater
the degree of risk aversion and the smaller the scope for manipulations
in end-of-period wealth distributions remaining unnoticed, the more
likely this is to happen. With regard to the scope for making such mani-
pulations, it should not be forgotten that the assumption that the com-
pany has no information at all on its customer’s loss prevention policy is
as extreme as the assumption that it can perfectly monitor the
customer’s actions. The truth will be somewhere in between, that is, the
company has some, but by no means complete, information on the pre-
vention policy that the individual chooses. The rating groups it sets up
using the available information can formally be integrated into the
ahove approach by dividing M into subsets that may be, but are not
necessarily, disjunct. The misallocation is then constrained to the pos-
sibility that within such a subsct the “wrong’ distribution 1s chosen. The
selection of the subset itself, which the purchaser makes when he decides
on loss prevention, is a choice that is to be welcomed from an allocative
point of view,

2.3. The Allocation of Liability Risks

2.3.1. The Incentive to Shift Risk

In the above analysis of moral hazard, misallocation mechanisms
were found to prevail, which are caused by insurance. Now we consider
the case where misallocation exists without insurance and is rectified
when insurance is bought.

To present the problem in its simplest form, we leave the case of
moral hazard and return to the equivalence-rating model of section

40For the sake of information, with OD and OD’ the figure illustrates the levels of
normal wealth net of prevention costs, (@ — b)q, for points § and G'. The level OD’ refers
to the fictitious case that G' is chosen although no insurance is bought. With compulsory
insurance, normal wealth falls short of 0D’ by the amount ['D".



C Theory of Insurance Demand 327

C 2.1. There will be one thing different however. While above it was
assumed that the opportunity set M of end-of-period wealth distribu-
tions does not extend beyond the normal range of convex indifference
curves, now the opposite is assumed. We consider the choice from a set
of liability risks some of which are large enough to bring about negative
variates of gross wealth with positive probability. Because the assump-
tion of strong risk aversion®! (& = 1) is, in practice, not significant and
because it would imply the trivial result that the decision maker under
all circumstances tries to avoid these distributions, we confine our
attention to the case of weak risk aversion. As is known, this case
implies that, for o sufficiently large, the indifference curves are
negatively sloped.

The optimal choice with indifference curves of this type is shown in
Figure 22. When there is no possibility of buying insurance, a point like
S may be optimal. Usually this point is regarded as being inefficient for
risk averse decision makers, since, to the left of it, there are other points
with equal £(V), but smaller ¢(}). The reason § is nevertheless attrac-
live is that, in casc of damage, the BDiLoos rule makes it possible to shift
part of the loss on to other people*?. An external effect can, therefore,
be made responsible for the choice of S.

F]'geu e 22

4 CF. section I11 B 2 (towards the middle), section IV B 2.3.2, and section V.C 1.4,
41Cf. chaprer 111 B.
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Let us consider how the choice is affected if insurance is offered.
Depending on the size of the loading factor g required by the company,
in the usual way an insurance line can be constructed for each point in
M. It is possible that, for g slightly above unity, there is an insurance
line like G’ in Figure 22 which has the property of being tangent at
point T’ to an indifference curve above the one on which S is situated.
In this case, a point on the upper boundary of M is chosen which is to
the left of the maximum. Contrary to the previous situation, insurance
now implies an increase in the amount of care devoted to loss preven-
tion*,

For the same reason, the misallocation that existed without insurance
is reduced or removed with the purchase of insurance. The latter is the
case if the point of tangency 7" is left of the line E(V) = ka(V') which is
the border between the range of those distributions extending partly
over the negative half of the wealth axis and those confined to the posi-
tive half*, If the whole of the end-of-period wealth distribution is
situated on the positive half of the wealth axis, then there is no external
effect and hence no misallocation. Liabilities in the case of damage are
paid by the insurance company, and the latter is compensated by receiv-
ing the purchaser’s insurance premium.

Insurance must, therefore, be welcomed in the case of liability risks.
However, the workability of a private market is not guaranteed. If the
company requires a higher loading factor than has been assumed up to
now, a situation may arise that is characterized by the insurance line
I"G" and the point of tangency 7 where there is neither an advantage
nor a disadvantage in buying insurance. Alternatively, even the con-
stellation described by I”G" may occur, where insurance is definitely
sub-optimal. But nevertheless, if, as assumed in Figure 22, the maxi-
mum of the opportunity set M is above the point where the indifference
curve passing through S enters the ordinate there is some scope for a
market solution with £ > 1.

Unfortunately there is no particular reason for such an optimistic
assumption. The maximum of the opportunity set is just as likely to fall
short of the point where the indifference curve through § enters the
ordinate. Obviously, in this case a market solution is impossible. The

4INote that the indifference-curve slope is always > —k. Thus, from §, a movement to
the right along the upper boundary implies lower prevention costs and a higher level of
normal wealth, A movement to the left implies the reverse.

4“4 For the role of the line cf. chapter 111 A 2.2 and 111 B, The possibility of a point of
tangency 1o the right of this line cannot, in principle, be excluded since the indifference
curves may be convex in the right-hand neighborhood of the line. The case described in the
text can be produced by choosing # sufTiciently close to unity. The line E(V) = ka (V') was
not plotted in Figure 22 so as to leave apen the question of which case prevails.
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insurance purchaser would only buy insurance if the loading factor 2
were sufficiently far below unity, but for such a value the company
would not be willing to supply protection. In a free insurance market the
misallocation described could not be avoided.

There are many widely discussed examples of misallocation caused by
the BrLoos rule. We only have to think of the catastrophies, reported
from various parts of the world, caused by selling pharmaceutical pro-
ducts before they have been properly tested, or of the danger arising
from nuclear power plants and chemical plants. Soveso and Harrisburg
are two names that can be mentioned here. There is also the case of
smaller airlines that are frequently accused of not taking sufficient
safety precautions. There is no reason to blame them; it simply is not
worth their while spending money on preventing indemnification claims
that, because liable capital is insufficient, would not have to be com-
pletely met. A similar comment can be made on the cable-car accident
that happened some years ago in Northern [taly. Because the cable-car
company did not spend the money necessary for a regular check of the
cable, many people lost their lives. The reason for the neglect of safety
again seems to have been the BLoos rule, for, after the accident, the fact
emerged that the liable capital was sufficient to cover only a very small
fraction of the indemnification claims made by the relatives of the dead.

2.3.2. The Role of the Coase Theorem

The accusation of misallocation was based on the prevalence of exter-
nal effects. In this connection we come up against the criticism of the
traditional view of external effects formulated by Coast (1960).

Suppose the activities of one economic decision maker affect another
decision maker adversely. Then, Coase maintains, independently of
whether the one who causes the damage is liable or not, a negotiation
between the two persons will produce a Pareto optimal level of the
activity in question. According to the traditional view expressed by
PiGou (1932, esp. pp. 134f., 174f., 183-188) such a possibility does not
exist. Only in the case of liability is there sufficient incentive for trying
to prevent damage. The simple argument by which Coase rejects the
Pigovian view is that, in the absence of liability, the person facing the
possibility of being damaged will try to bribe the other (o reduce or stop
his activities. Thus a satisfactory allocation will be achieved indepen-
dently of the liability rule®.

4 The Coase Theorem refers to the activities of both parties involved, In the present
context we are only concerned with changes in loss prevention policy,

The validity of the Coase Theorem has frequently been questioned. Among the prob-
lems discussed is whether the theorem is valid in the case of separable cost functions, CF,
Davis and WHinston (1962), MarcHann and Russec (1973, 1975), CoeHLo (1975),
Girrorp and Stong (1975), and GrREENwOOD, INGENE, and HorsrIELD (1975). Moreover,
the invariance with respect to changes in property rights contended by Coase must be
doubted in the case where one of the parties has market power. See Sinn and SCHMOLTZI
(1931).
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For the above examples, however, a market solution of the kind
described by Coase is not available in reality. The question therefore
arises of why this is so. There seem to be two reasons in particular that
will account for it.

Consider first the examples referring to the danger from nuclear
power plants and chemical plants, as well as the example of automobile
liability risks to which reference has been made from time to time in this
book. What these examples have in common is that the risk is dispersed
over a great many people and cannot be divided up among them. The
apent causing the risks is not obliged by law to pay compensation ex
ante, but must compensate for any damage ex post. Yet, because of the
Broos rule, he cannot.

In such a case according to the Coase Theorem, the people en-
dangered could be expected to bribe the one causing the damage in order
to induce him to change his behavior. The reason that this does not
happen in reality relates to the public-goods aspect of the problem.
When bribes are to be collected to induce the desired behavior change
on Lhe part of the agent causing the risk, people prefer to have their
neighbors pay. This free-rider problem was seen, in principle, by Coask
(1960, pp. 17 f.) and has been stressed by many others. For a great many
practical allocation problems, where large liability risks are involved, it
scems to be an insurmountable obstacle to a market solution.

Next consider the examples referring to insufficiently tested pharma-
ceutical products, the cable-car accident, and the poor safety standards
of small airlines. Here, there are two significant theoretical differences
from the first case. One is that the risk is separable between those who
are endangered. The other is that, in addition to an ex posr compensa-
tion in the case of damage, there is the possibility of an ex ante com-
pensation: the purchaser, i.e., the endangered person, decides whether
or not to accept the risk.

These two differences exclude the public-goods aspect described
above. Well-informed consumers will be aware of the risk imposed
upon them by the Broos rule and will therefore buy the respective com-
modities or services only if the prices are sufficiently low to compensate
for this risk. There are no external effects and the market solution can
be expected to prevent a choice such as the one represented by point S in
Figure 22,

However, the assumption of well-informed consumers is particularly
misleading in the uncertainty case, If the probability of damage is very
low, there is almost no chance of inferring the required information
from observing empirical frequencies. Moreover, although producers
are normally well informed regarding the possible risks of their
products, for obvious reasons they make every attempt to keep their
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information secret. Thus, in the case of product liability risks, the
ignorant consumer seems to be the normal case.

So the Coase Theorem appears to be a rather weak argument against
the BLoos rule. There seem to be important cases where the BLoos rule
does indeed produce an artificial incentive to choose probability distri-
butions that involve particularly large liability risks.

2.3.3. The Advantage of Compulsory Insurance

Since the market mechanism often seems unable to internalize the
risks imposed on other parties through the operation of the Broos rule,
other solutions must be sought.

In those cases where the lack of information on the part of the
endangered party is the reason for misallocation, a good solution might
be to force producers to reveal detailed product information to the con-
sumers. For medicine, food, and many other articles various countries
have successfully chosen this way.

In the other cases where the free-rider problem is the reason market
forces are unable to react appropriately to the Broos rule, more direct
government intervention may be required.

One possibility would be the introduction of a tax-subsidy mechan-
ism*, But with such a solution neither the person causing the risk nor
the person endangered would be freed from risk. If both are buying
market insurance to reduce their risks, three agents would be concerned
with the difficult task of estimating the loss distribution: the govern-
ment, the insurer of the person sustaining the damage, and the insurer
of the person causing it.

If we neglect the value question of who should pay whom, another
solution that has frequently been chosen in practice seems much
cheaper. This solution is the introduction of compulsory insurance*’.
Compulsory insurance can solve the allocation problem just as well and
just as badly as a tax-subsidy mechanism, but has the advantage that,
with a single action, both parties, the one causing and the one sustaining
the damage, get rid of the risk.

The allocative implications of such a compulsory insurance are illus-
trated in Figure 23. Analogously to Figure 22, without insurance, point
S is chosen. The position of this point reveals both the shape of the end-
of-period wealth distribution and the optimal loss prevention policy.

45 1f the Kaldor criterion is accepied, it is sufficient to follow Picou (1932, exp. pp. 192-
196 and chapter X1) and tax the person causing the damage without paying out the
revenue Lo the one sustaining it

41 The allocation of liability risks thus seems to be a good case for Arrow’s proposal that
the government ought to insure those risks that are not underwritten by private com-
panies. Cf. the above reasoning concerning Figure 21.
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Figure 21

With compulsory insurance, the decision maker chooses another loss
prevention policy which is described by point G. Under a full-coverage
contract the corresponding level of end-of-period wealth is given by
point /. Rather than requiring full coverage, the government might also
allow a partial-coverage contract like that given by point T. In this case,
however, care must be taken to ensure that the degree of coverage is
sufficiently large so as to avoid a shifting of risk, i.e., the possibility of
negative gross wealth. In the case of unbounded loss distributions this
requirement of course leads back to the full-coverage case. For bounded
loss distributions it means that only points on the insurance line to the
left of the ‘border line’ u = ko are admissible.

In principle, it is possible to solve the allocation problem implied by
the BLoos rule with the aid of a compulsory insurance system. It should
not be forgotten, however, that the other allocative weaknesses of insur-
ance studied above have not been overcome. Thus, in the case of large
liability risks, a compromise must be made between two sources of mis-
allocation, one that is brought about and one that is removed by
insurance,

4. Summary

The analysis of insurance demand was carried out for two kinds of
contracts: full-coverage contracts, where the individual has to choose
between all or noting, and partial-coverage contracts, where any degree
of coverage between zero and unity can be chosen. The first part of the
analysis was concerned with the case of given risks that cannot be
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manipulated by the insurance purchasers. It brought about the follow-
ing results.

In the cases of property insurance and small-scale liability insurance
there is scope for mutunally advantagenns contracts hetween the insur-
ance purchaser and the company. The picture is different in the case of
large liability risks. Since here insurance means that the insured person
loses the advantage of shifting part of his risk to others, a market solu-
tion is not guaranteed. It is true, a market solution is possible in the case
of strong risk aversion (¢=1) since the purchaser has the lexicographic
preference of preventing his net wealth from falling to zero. However,
unfortunately only the hypothesis of weak risk aversion (0<e<1)
seemns realistic. Only this hypothesis is compatible with the empirical
observation that people develop a higher intensity of insurance demand
as they grow older. In the case of weak risk aversion, people will not
demand either full-coverage or partial-coverage contracts if the possible
losses are sufficiently large relative to the decision maker’s wealth.

The analysis of insurance demand for given risks can explain various
phenomena observable in insurance markets. But from an economic
point of view, it is particularly important to understand the allocative
effects brought about by insurance. The following results were achieved
in the second part of the analysis where the size of risk was considered to
be subject to individual choice.

Under equivalence rating and unconditional compensation payments,
property insurance leads to a favorable change in the loss prevention
policy of the insurance purchaser: cheap insurance is substituted for
excessive loss prevention costs. Unfortunately these ideal conditions are
often violated in practice. First, in the case of community rating, the
purchaser can manipulate the loss distribution without having to be
afraid that the company will react with a change in the premium re-
quired. This possibility implies that, the higher the degree of coverage,
the more he reduces his loss prevention effort beyond the optimum. In
the exceptional case where the degree of coverage is above 100% there is
even an incentive to destroy the object insured deliberately. A second
allocative danger is brought about by the cost-compensation principle.
This principle artificially reduces the price of repairs and recovery,
thereby producing excessive demand leading to welfare losses.

While, in the case of property risks, insurance induces a reduction in
loss prevention costs it may, in the case of large liability risks, have the
opposite effect. Under equivalence rating this allocative effect is
welcome. Without insurance, people neglect loss prevention because the
BLoos rule makes it possible to transfer part of the risk 1o others. With
insurance this external effect is removed and hence the ‘right” amount of
loss prevention effort is chosen. Since there is no guarantee that large
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liability risks will be voluntarily insured, government intervention seems
to be required. The introduction of compulsory insurance for large
liability risks was seen to be an attractive possibility.



