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In this article specific hypotheses on the shape of a rational agent's risk preference function nre
derived from psychophysical laws. Weber's law is used to establish the hypothesis of constant
relative risk aversion for a myopic expected-utility maximizer. Weber's law, Fechner's law and a
modified version of Koopmans' preference functional are shown to generate a family of multi-
period preference functionals which are ecither of an additive logarithmic or a multiplicative
Cobb-Douglas type. This family has very appealing implications in a world of stochastic constant
returns to scale. For the actual decision the multiperiod optimizer exhibits constant relative risk
aversion as does the myopic optimizer. However, with the passage of time, the degree of this risk
aversion, in general, moves towards unity. Moreover, it is worth noting that the agent neither has
to make the consumption decision simultancously with the selection of an optimal risk project nor
needs any information about the future except his or her own preferences.

1. Introduction

Suppose homo oeconomicus has to choose one out of a set of mutually
exclusive probability distributions of end-of-period wealth. How then is
the decision made? According to the widely accepted rationality axioms
of von Neumann and Morgenstern (1947) a rational agent behaves as if
maximizing expected utility: with the aid of a suitably chosen, mono-
tonically increasing, utility function, the probability distributions of
end-of-period wealth are first transformed into probability distributions
of utility and then, from these distributions, the one with the highest
mean is selected.

In a large body of economic literature the expected-utility rule has
proved to be a flexible tool for modeling decision making under risk.

* This paper is a concise presentation of some of the ideas spelled out in a much broader context
in Sinn (1980).
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Unfortunately however, flexibility is not necessarily an advantage. It
may as well be a sign of a lack of content. Indeed. as long as nothing is
known about the utility function except that it is a strictly increasing,.
and perhaps concave, function, the behavioural implications of the
expected-utility rule are quite vague.

This article is therefore devoted to the task of establishing a hypothe-
sis on the shape of the utility function for both a myopic decision
maker and a multiperiod optimizer. To do this, use will be made of
psychophysical laws which, up to now. have received little attention in
€conomics.

The psychophysical laws are reviewed in an interpretative way in
section 2. On their basis, in section 3 the preference hypothesis itself is
formulated. Section 4 offers a few comments on competing proposals
regarding the shape of the utility function that have been made in the
literature.

2. The relevant psychophysical laws
2.1. The sensation function

There are two psychophysical laws needed to establish the preference
hypothesis. Our discussion starts with the law describing the functional
relationship between a stimulus intensity r and its subjective magni-
tude s:

s=us(r). (1)

An carly hypothesis concerning the shape of this “sensation function’ is
Fechner's (1860, 1877, 1888) logarithmic law, saying that

s=a+bhlnr, (2)
where « is arbitrary since it depends on the unit [1] of r, but b is

characteristic for a special stimulus continuum. Fechner referred to
Weber's (1834, 1846) threshold experiments which indicated that the

{1] When a new unit is chosen which is 1/x times as large as the old one, (2) becomes
s=(a+blnx)+blinr
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smallest just noticeable increment to a stimulus intensity 2] is. within
the relevant range, a constant fraction of the intensity level itself [3]. By
assuming that, regardless of the intensity level. all just noticeable
increments are subjectively equal, he was able to show that this re-
markable constancy implies the logarithmic sensation function (2).
Unfortunately, however. Fechner did not provide a legitimation for his
assumption. Thus it is not surprising that his law has often been
rejected.

Another hypothesis which has been very popular in recent years is
Stevens' (1975) power law

s=ar®, a«>0,0>0. (3)

Here a is meaningless for it depends on the unit of r, but © char-
acterizes the stimulus type [4]. Stevens derived his law purely induc-
tively from a great many experiments carried out at Harvard Labora-
tory of Psychophysics. In these experiments people were asked to
estimate stimulus intensities by the direct use of real number scales.
Surprisingly, for a given continuum, the nuwmber-matching cstimates
turned out to be a power function of the stimulus intensitics. Examples
for the continua considered are loudness, vibration, lightness, length of
straight lines, saturation of colour mixtures, salt concentration and
heaviness.

Although there cannot be any doubt concerning the validity of
Stevens’ measurements, it is unclear whether the numbers people chose
really did measure the subjective magnitude or sensation of the objec-
tive stimulus intensities being presented. As Garner et al. (1956:
155-157), Attneave (1962: 623-627) and Ekman (1964) have rightly
pointed out, such interpretation requires a strong assumption: namely
that the subjective magnitudes of numbers are identical with their
objective ones. Since this assumption is as arbitrary as Fechner's
assumption that all just noticeable increments are subjectively equal, we

{2} The stimulus must be measurable by a ratio scale.,

[3) For some time it was popular to deny Weber's law (see for instance Boring (1942: 138 1)) since
the fraction increases for very high and very low stimulus intensities, However, as Stevens (1951
35) notes, the range where the fraction is indeed constant, covers 99.9% () of the practically
appearing stimulus intensities.

[4] When a new unit is chosen which is 1/x times as large as the old one, (3) becomes
5 = (,\'“a)rﬁ.
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must conclude that number matching is in fact a cross-modality maich-
ing. where number sensation is set equal to the sensation of another
kind of stimulus. Consequently, all we derive from Stevens’ experiments
is a system of relationships between the underlying true sensation
functions, which themselves are unknown.

A variety of shapes of these true sensation functions is compatible
with Stevens’ empirical findings. The functions may be of Stevens’
power type [5]: yet, as shown by Ekman (1964), they may just as well
be of Fechner’s logarithmic type [6]. Note, though, that they cannot be
partly of one and partly of the other type. Whenever the true sensation
function for a particular continuum is found to belong to one of the
two types of functions, then. provided Stevens' empirical results are
valid, the true sensation functions for all other continua of necessity
have to belong to the same type. The reason is that a number-matching
experiment of the kind

(=N
a+0,Inr =a,r". (4)
l=a.2=norl=n.2=uaq,

would never yield the power relation Stevens observed.

Fortunately a method exists for determining the family to which the
still unknown sensation {unctions belong - the method of interval or
category estimation. Here the experimental subject is asked to classify
given stimuli into equidistant magnitude categories or to manipulate a
set of stimulus intensities so that the distances between them seem to be
subjectively equal. The basic difference between interval estimation and
the number-matching methods of measuring employed by Stevens is
that, instead of comparing the number continuum with another con-
tinuum, the experimental subject is concerned with only one con-

{S] Suppose that the true sensation function for numbers is s, = a,r™ and that for another

nln

. . S e . : “ P
continuum the sensation function is s, = a,, 7 Then it follows from s, =5, i.e., a,r =a rf
that a number-matching expenment will yield a power function with the exponent @, /6,

« i
P H,/H,
, =( ) o/t

" a

"

6) Lets,=a, +6@ Inr, and 5, =a, + 6O, In r,. Then, since in this case number matching means
B B 0 n a M a « ¥

that a, +0 lnr, =a,+ 6, Inr, or, equivalently, r, =e'" 758 B4 power function

observed in number-matching expenments is compatible with true sensation functions obeving

Fechner's law,
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tinuum: for a given kind of stimulus, the task is to compare an increase
in stimulus intensity on a certain level with an increase in the intensity
on another level. Hence the experimental subject is asked for precisely
the piece of information needed to find out about the type of his
sensation function.

In order to be able to compare the results obtained by the method of
interval estimation, define

s”(r)
s'(r)

r. (5)

n= -

The parameter 7 is the negative elasticity of marginal sensation s'(r)
ie., n= —[ds'(r)/3r][r/s'(r)]. It measures the degree of curvature of
the sensation function s(r) at point r. A value of 7 =0 characterizes a
linear sensation function, a value of 7> 0 a concave function and a
value of 7 <0 a convex function. In the special cases of the power and
the logarithmic functions, regardless of r, the measure 7 takes on a
constant value and may hence be utilized to indicate which class
prevails. [t can ecasily be calculated that

1-0 ifs=ar® a, OG>0, (Stevens law),
y = (6)

1 fs=a+O@In r; ©>0; (Fechner'slaw).

If m < 1, so that the sensation function is only moderately concave, or
even linear or convex, then Stevens' law prevails. In the special case
n = 1, where the sensation function is more curved than under Stevens’
law, Fechner's law shows up. If 5> 1, there is a still stronger curvature
that, strictly speaking, excludes both Stevens” and Fechner's law, but 1s
obviously nearer to the latter than to the former.

The first interval-method result was obtained by Plateau (1872). He
asked painters to mix a grey color, so that its lightness was halfway
between black and white, and found n = 2/3, However, Platcau was
soon corrected by Delboef (1873: esp. 50-101), who asked the experi-
mental subjects to produce the grey by changing the ratio of black and
white areas on a rotating disk. This more exact method yielded n=1.
Repeating Delboef’s experiment, Guilford (1954: 199-200) derived a
sensation function which was even a little more curved. The value
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7= 1.15 can be calculated from his tables [7]. Later even Stevens and
Galanter (1957) and Stevens (1961) corroborated the tendency of these
results. They admitted that, in comparison to number matching. the
sensation functions observed in interval experiments show a systematic
bias towards higher values of 7. i.e.. a bias towards Fechner's law. In
the sequel there have been a lot of further investigations [8]. The main
result, which is a triumphal rehabilitation of Fechner's law, is sum-
marized in a review article by Ekman and Sjéberg (1965: 464). *‘The
logarithmic relation between indirect interval and direct ratio [number
matching] scales is now a well-established {act for a great number of
continua.” Since, however, for all of Stevens’ continua, including the
number continuum [9], the true sensation functions must be logarithmic
if a logarithmic function is shown for only one continuum, we have
thus come to the first of the psychophysical laws we need for establish-
ing our preference hypothesis — Fechner’s law [10].

2.2, The relativity law

The second law we need is Weber's (1834: 161, 172-173) relativity

{71 Suppose the sensation function is of the general form s =a + f6r% >0, @ # 0. Then for
two stimulus intensities £, and 7y and their psychological mean £ we have the relation a + g0
~(a+ BOrP +ar fOrP) /2 or equivalently 77 = (7 + £y /20 Given Guilford's results 7, = 100,
ry = 2500, and £ = 411 it is possible to calealate, by an iterative procedure, @ =1 - = - 0.1529.
8] Compare especially the investigations of Galanter and Messick (1961) and Eisler (1962), who
demonstrate the logarithmic celation for the loudness continuum. These two studies are quite
important since it is the loudness continuum which had served as a reference basis in many
cross-modality experiments made by Stevens (see, eg. 1966, 1975) in order to check the
number-matching estimations.

{9] The fact that a aumber system is chosen, where the difference between the lengths of two
writlen numbers is equal to the difference between the logarithms of their values, is in line with
this result.

{16} A strong indication for the validity of Fechner's Taw can also be found in neurophysiological
measurements, f we consider that the inteasity of a simple physical stimulus s transformed into
an intensity of electric current in the receptor organ, which itself determines the impulse frequency
of the corresponding nerve fibreo A first result stems from Frohlich (1921 esp. 15). For the
luminosity sensation he found the intensity of current to be a logarithmic function of light
intensity. Later Hartline and Graham (19320 1938). Fuortes (1959), and Fuortes and Poggio (1963)
similarly discovered that the light intensity is transformed into impulse frequency according to a
togarithmic function. Galambos and Davis (1943) and Tasuki (1954) found corresponding results
for the loudness continuum. Of course compatibility with Frohhich's result then requires that the
impulse frequency be proportional 1o the intensity of current in the receptor organ. That this is
indeed the case was shown by Katz (1950) and Fuortes and Poggio (1963).
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law [11]. which is closely related to the first law but not identical to it.
Weber derived it as a generalization of his threshold experiments.
However, it is also a generalization of Fechner’'s law and is even
compatible with Stevens' law [12]. Weber's law refers to the same
stimuli as these laws and states that our senses are concerned not with
absolute but with relative stimulus changes. Equal relative stimulus
changes seem equally important, equally intensive, and are perceived as
being equal: they are interpreted as the same information.

We thus detect an object under strong or weak light. because the
light intensity ratios on the retina stay constant. and also independently
of its distance, since not the absolute magnitude of the retina picture
but its proportions matter. We perceive a melody independently of the
octave in which it is played, for the frequency ratios stay constant [13].
and independently of the musician’s distance, as only the loudness
ratios matter. Our sensory system has no difficulty in steering our car
through daily traffic although during its evolutionary genesis it had
learned merely to command our comparatively poorly equipped natural
body, and we live our luxurious lives as self-cvidently as our ancestors
lived under much more modest circumstances. Moreover, how would
Niels Bohr have been able to explain the atom structure by a planctary
model if he had not thought in terms of magnitude ratios?

The reason for the phenomenon of ratio perception seems to be that
the information we recetve from our environment is encoded in a ratio
language: equal loudness ratios, cqual light intensity ratios or equal
magnitude ratios do indeed indicate equal pieces of information. Thus
it 15 not surprising that in the long run of evolution our sensory system
has learned to decode these picces of information economically, namely
by neglecting the information about the absolute intensities and instead
concentrating on their ratios. We should accept this speciality of our

[11] In Weber's (1834: 172) own words the law is: *In observando diserimine rerum inter se
comparatarum non differentiam rerum, sed rationem differentiae ad magnitudinem rerum inter se
comparatarum percipimus.” This general relativity law was also proposed by Wundt (1863: esp.
65-70), Grotenfelt (1888), Mcinong (1896), Lipps (1902; 1905: 231 -287) and others. Recently a
formal axiomatization of a *“relation theory’ was provided by Krantz (1972).

[12] See Stevens (1975: 18).

[13] The fact that a step smaller than an octave changes the tonality does not contradict the
hypothesis of ratio perception since the frequency ratios change in this case. If a melody is played
in A-major it sounds different from that in C-major, for example. The reason is J.S. Bach’s equal
temperament of the scale, which made the ratios of all frequency pairs integers in order to avoid
tremolo.
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perception apparatus as a matter of fact and ask only what it implies
for the shape of the von Neumann-Morgenstern utility function.

3. The risk preference function

This section establishes a hypothesis in the shape of the von Neumann-
Morgenstern function for both the myopic decision maker and the
multiperiod optimizer. For the former only Weber's law is required,
whereas for the latter reference will also be made to Fechner's law.

3.1. The myopic decision maker

We start with the myopic model, assuming that the decision maker has
to evaluate probability distributions of actual wealth. Wealth is either
assumed to serve as a means of satisfaction as such or ts regarded as an
unspecified quantity index of all future consumption possibilities. Tak-
ing into account Weber's relativity law, we formulate the following

Weber axiom.  Equal relative changes in wealth are perceived as equally
significant,

This axiom provides the psychophysical basis of our hypothesis. It
yields a true description of reality if wealth perception runs parallel to
the perception of other psychophysical stimuli like, for instance, the
‘length of a stratght line” or the *magnitude of a real number’.

In order to find out what the axiom implies for the shape of the
utility function, consider Barrois® (1834: esp. 260-261) problem of
determining the maximum willingness to pay for a full-coverage in-
surance contract, Let U}, U’ > 0, denote the decision maker's von
Neumann-Morgenstern utility function, let ¢ denote the initial wealth
and let C, C =0, denote a random variable characterizing the loss
distribution the decision maker faces for the period in question. In the
absence of insurance, end-of-period wealth is ¢ — C. The corresponding
level of expected utility is E[U(a — C)] where E(-) is the expectation
(or: mean-value) operator. Suppose now, insurance is bought at a
premium p. Then, end-of-period wealth takes on the non-random value
a —p and hence brings about the utility U(a — p). The maximum
insurance premium the decision maker is willing to pay. p... s
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determined in such a way that he or she is just indifferent between
buying insurance and staying uninsured:

E[U(a-C)] = Ula—p,,.)- (7)

Applying the inverse function of U, U™', to both sides of this equation
we have

P =@ — UTH{E[U(a~ C)]}. (8)

The expression U~'{E[U(W)]} is usually called the ‘certainty equiv-
alent’ of a probability distribution W of end-of-period wealth. The
certainty equivalent gives the non-random level of wealth which the
decision maker considers equivalent with the probability distribution
W. Quite plausibly, therefore, (8) says that the decision maker is at
most willing to pay an insurance premium amounting to the difference
between initial wealth and the certainty equivalent of the end-of-period
wealth distribution in the absence of insurance.

Now suppose the initial wealth and also the loss distribution are
changed, although without altering the distribution of the loss-wealth
ratio C/a. Then, according to the Weber axiom, the nature of the
decision problem is unchanged and consequently the maximum relative
part of wealth the decision maker is willing to pay for the insurance
contract should not change either. In other words, multiplying p,...
and C by a factor A, 0 <X # 1, we should find the equation

AP =Aa— UHE[U(Aa ~ XC)]}, (9)

which requires a linear homogeneity in the certainty equivalent.
According to a theorem of Aczél (1966: 151-153), the only strictly
increasing functions U(-) satisfying this property are Inw and yw?,
y # 0, and arbitrary linear transformations of them. We shall hence-
forth call these functions the Weber functions.

With the Weber functions, our argument establishes a hypothesis on
the shape of the utility function which Pratt (1964) and Arrow (1965)
classified as constant relative ( proportional) risk aversion and which
Pollak (1970) called weak homogeneity. Ultilizing the Pratt-Arrow mea-
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sure of relative risk aversion [14]

Ut
£E= Ui (10)

where w is a particular variate of W, we can write the Weber functions
as {15]

Inw, e=1,

U(w)z{(l—e)w!—‘, e# 1. (1)

Instead of employing Weber's relativity law it might be tempting to
refer to Fechner's logarithmic sensation law in order to establish a
hypothesis on the shape of the von Neumann-Morgenstern function
U(w). Suppose the subjective magnitude of wealth is identical with the
subjective magnitude of the numbers by which wealth is measured. and
suppose moreover the subjective magnitude of wealth can also be
identified with its introspective utility. Then the introspective utility-
of-wealth function u(w) has to be logarithmic, te.,

u{w)=Inw, (12)

or any strictly increasing lincar transformation thereof. Thus, at first
glance, it seems that the von Neumann-Morgenstern function U(w) is
logarithmic, too. This, indeed, 1s the reasoning of Bernoulli (1738), who
postulated a logarithmic utility-of-wealth function [16] (anticipating

[14] The parameter £ is formally analogous to 1 defined in (5) and hence has a similar meaning. It
can be shown that, for a wealth distribution with a small variance o (W), the difference between
the mean and the certainty equivalent is approximated by (W )e /{2E(W)]. Sce, eg., Prau
(1964).

{15] It can be shown that these functions depict the same preference structure as a homothetic
indifference curve system in the g-o diagram, if, for (nearly) arbitrarily chosen distributions, o/p
is small and consequently a quadratic approximation can be used, or if all distributions to be
evaluated belong to the same lincar class such that a distribution is completely described by two
parameters only. (Here g and o denote the expected value and standard deviation of the wealth
distribution.) See Sinn (1980: ch. IIl A 2.2.). This shows that our hypothesis was already implicitly
anticipated by Hicks (1967: 114), who regarded homothetic indifference curves as the ‘standard
case’, and by I. Fisher (1906: 408-409), who made the subjective weight of risk depend on the
coefficient of variation, o/p.

{16] Bernoulli argued that a realistic utility-of-wealth function should have the property that equal
relative changes in wealth bring about equal absolute changes in utility. Although today Bernoulht
is famous for the expected-utility rule as such, it should not be overlooked that during the
subjectivist discussion of the last century this argument for the logarithmic function was regarded
as the central point of his essay. Sce the preface of L. Fick to the 1896 edition of the German
translation of Bernoulli's article.
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Fechner by more than a hundred years) and proposed the rule
max E[in W]. However, it is well known that the introspective utility
function should not be identified with the von Neumann-Morgenstern
utility function, for there is no reason for two persons with the same
utility function for non-random wealth acting alike if probability
distributions of wealth are to be evaluated [17].

By referring to Weber's law we have avoided Bernoulli’s error. Thus
it is natural that in (11) the logarithmic function turned out to be only
one of the possibilities. In order to clarify the difference between the
Weber functions (11) and the subjective utility function (12). let us
follow a proposition of Krelle (1968: 144-147). Krelle suggested that
von Neumann-Morgenstern utility should be determined in two steps.
In the first step a variate of wealth w is transformed into subjective
utility u(w). In the second step this subjective utility is transformed
into von Neumann-Morgenstern utility by means of a specific risk
preference function £(u). Hence

U(w) = 2[u(w)]. (13)

The shapes of U(w) and u(w) are determined by (11) and (12). Given
these shapes, the only admissible versions of the specific risk preference
functions are [1§]

u, e=1,
.Q(u)= (] —E)C“v')“, £ # 1‘ (14)

or strictly increasing linear transformations thereof.
As is well-known the curvature of the von Neumann-Morgenstern
function, which is measured by & from (10), determines the individual's

{17] Consider the vehement criticism of Allais (1952, 1953) and the clarifying paper of Baumot
(1958).
(18] In general, for u(w)=a+ 0 Inw, & >0, (14) becomes

a+6lnw, e=1,
ﬂ[u(u-)]- {(1_E)c(n—.xaoﬁlnw;=c(l—a)n(l_E)wmlw)‘ e,

Since the von Neumann-Morgenstern function U(-) is defined up to a strictly positive linear
transformation, obviously it is only the factor 8 which has a behavioural implication in the case
e # 1, given the value of ¢ However, since the whole set of possible von Neumann-Morgenstern
functions is independent of 6, we arbitrarily set @ = 1. The degree of risk aversion is then only
modeled by e.
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risk aversion in evaluating probability distributions of wealth. Accord-
ing to Krelle's hypothesis (13). this degree of risk aversion is traced
back to both the curvature of U(-) and that of £(-). The reader may
easily check that the subjective utility function (12) by itself implies
e =1, that is, some positive degree of risk aversion. It is possible that
the specific risk aversion function is linear so that this degree of risk
aversion is not modified. This is Bernoulli’s case which is depicted by
the first line on the right-hand side of (14). In general. however, as
captured by the second line in (14) the specific risk preference function
is curved and will hence exhibit a significant influence on the evalua-
tion of risks.

In the general case the specific risk preference function takes on the
particular mathematical form of the exponential function. This function
was first suggested by Freund (1956) for the objective continuum and
was shown by Pfanzagl (1959a: 39-41, 55-57; 1959b: 288-292) and
Pratt (1964: 130) to be characterized by what, in the Pratt-Arrow
terminology, is called constant absolute risk aversion. Hence our prefer-
ence hypothesis not only implies constant relative risk aversion on the
objective (wealth) continuum, but also constant absolute risk aversion
on the subjective (utility) continuum.

In line with the Pratt-Arrow definitions, the degree of absolute risk
aversion of the specific risk preference function is —Q7(u) /82'(u).
Calculating this measure for (14) we find

27 (u)
C2(u) ) (15)

e=1+

Thus, the degree of relative risk averston (€) on the objective continuum
is one plus the degree of absolute risk aversion (—87/8') on the
subjective continuum. If the degree of absolute risk aversion on the
subjective continuum is strictly positive, that is, if £(-) is concave, then
the risk aversion predetermined by the logarithmic subjective utility
function (12) is reinforced: relative risk aversion on the objective
continuum is above unity. If, on the other hand, the degree of absolute
risk aversion on the subjective continuum ts strictly negative, that is, if
£2(-) 1s convex and risk loving on the subjective continuum prevails,
then the risk aversion predetermined by the logarithmic subjective
utility function (12) is weakened: relative risk aversion on the objective
continuum is less than unity.
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3.2. The multiperiod optimizer

It is unclear whether the myopic or the multistage optimizing model is a
better description of reality, but there is no question that the latter is
the better normative approach. Thus we attempted to show how a
multiperiod optimizer should behave if his or her preferences were
compatible with the psychophysical laws.

For this task our basic assumption is that the multiperiod preference
functional can be written in general as {19]

r
ly| L@ vz 050500 (16)
=0

Here I7_,f(C,)A, is the deterministic multiperiod preference func-
tional, where T is the planning horizon, C, consumption in period ¢, C
final wealth, f(-) the felicity-of-consumption function, and A, the
felicity discount factor. In the version T=o00 and A, =N, 0 <A <1,
this preference functional was provided an axiomatic basis by Koop-
mans (1960). It is well known that Koopmans’ separability assumption
responsible for the additivity is crucial. However, we follow common
usage and accept it as a simplification [20]. ¢(-) i1s a specific risk
preference function which is introduced to allow for degrees of risk
aversion other than that implied by the curvature of f(-), the genuine
task of which is to model the decision maker’s intertemporal prefer-
ences rather than his risk preferences. Our aim is now to specify this
function () and the felicity function f(-) by reference to the psycho-
physical laws described above.

The first piece of information can be derived from the previous
discussion concerning the myopic case. Suppose initial wealth w is
replaced by a factor x measuring the level of a (deterministic) con-
sumption path (xc¢l, xcf,....xck) which is just the multiple of a
standard path (c¢§, ¢f,....c¥). Then, according to the Weber axiom,
(16) should have the property that the decision maker, in evaluating

[19] For an axiomatic foundation of this preference functional see Sinn (1980: ch. IV B 2.1.1).
{20] The additivity can be rationalized if the complementarities between consumption levels in the
different periods are the weaker the greater the distances between these periods, for then their
disturbing character can be reduced by a simple lengthening of periods. This has been pointed out
by Arrow and Kurz (1970: 11-12).
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gambles on x, behaves as if following the rule max E[U( X)]. where
U(-) exhibits constant relative risk aversion. Thus, for precisely the
same reason as that bringing about (11), we should have

t=0

T
. In x+¢ Ef(c;“)k,]. e =1,
\P{ ))\,]= (17)

|
Al Eren] o

=0

where ¢ is the Pratt-Arrow measure of relative risk aversion char-
acterizing the shape of U(-).

Unfortunately this information is insufficient to determine both Y (-)
and f(-), for it refers to a sum effect of both functions. What we need
is further information concerning the shape of either () or f(-). For
the latter such information is indeed available. Assume that the felicity
of consumption can be identified with the subjective magnitude of
consumption and assume that the latter is determined by the subjective
magnitude of the number by which consumption is measured. Then the
felicity function obeys Fechner's law. A possible objection to this
outcome is that the subjective magnitude of one period’s consumption
cannot necessarily be determined independently of consumption in
other periods. However, this possibility has already been excluded with
the assumption of the separable Koopmans-preference functional. Thus
we can formulate the following

Fechner axiom:  Equal relative changes of a period’s consumption bring
about equal absolute changes of felicity in that period.

Obviously the preference functional for deterministic multiperiod plan-
ning is then

T
YA Ing, (18)
1=0

where we omit an additive constant and assume [21] £7_, XA, = 1. This

[21] As in the myopic case this assumption has no behavioural implications and is made for
simplicity only., Compare fn. 18.
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preference functional was already mentioned by Modigliani and Brum-
berg (1955: 396. fn. 15) in an allusion to psychophysics. It is in line
with the logarithmic utility-of-wealth function (12) if consumption in
each period is proportional to initial wealth, i.e.. if wealth is indeed an
adequate quantity index of future consumption possibilities, as we had
assumed in the myopic model.

Now it is easy to find the specific risk preference function y(-)
compatible with both (17) and (18). It is again the function (14) from
the myopic case, for combining ¢(-) = £(-) and (18) is the only way to
satisfy (17). Accordingly, the possibilities for the preference functional
(16) turn out to be

il

where the latter is derived from

E(i)\,lnq). £€=1,
f(C,)?\.]}=

i

T
(1 _ E’)E( 1—'[ C;(“E')A'), E’ #* 1‘
T=0

E{(] _ E;)c(l ~e WL A, In (‘,)}.

For a world of stochastic constant returns to scale and under the
assumption A, =X, 0 <A<, the implications of these preference
functionals have already been studied by Pye (1972). He showed that a
myopic utility-of-wealth function relevant for the actual decision can be
derived which is characterized by constant relative risk aversion, the
degree of which changes with time. Specifically, if ¢, is the Pratt-Arrow
measure of relative risk aversion relevant for the probability distribu-
tion of wealth appearing at the time ¢ and depending on the decision at
t— 1, then

T
g=1-(1-¢)Y A,. (20)

T=1

Furthermore he found that the part of wealth at time ¢ reserved for
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consumption during the following period is given by

Verbally the rule (20) means that relative risk aversion nears unity as
time goes by. Thus with ¢ <1 it is possible to depict the everyday
observation that risk aversion increases with age.

In a study of another family of preference functionals Samuelson
(1969) admitted his surprise in finding a time independence of risk
aversion, for he had expected risk aversion to increase with age. arguing
that the ‘chance to recoup’ is the greater the younger a person is. One
might claim that this supposition is now rationalized by our preference
hypothesis. However, this interpretation is incorrect, for, contrary to its
intention, decisions taken in the youth are of greater importance than
those taken in late years. On the one hand, according to (21). consump-
tion is always proportional to wealth: on the other hand, constant
relative risk aversion means that the relative wealth distribution (e.g.
determined by the portfolio structure) is chosen independently of the
absolute wealth level. Therefore, in comparison to what the situation
would otherwise have been, a given percentage change in wealth at any
point in time causcs an equal percentage change in consumption in
each of the following periods up to the horizon, including an equal
percentage change in final wealth. This implies that the younger a
person is, the more lifetime utility (18) is affected and that, even for a
very young person, there is no chance to recoup at all. Since according
to (16) distributions of lifetime utility are evaluated after applying ¢(-)
as a specific risk preference function, the correct interpretation of the
time dependence of risk aversion is now obvious. For old persons the
dispersion of lifetime utility is so small that the curvature of ¢(-) can
be neglected, so that risk neutrality on the subjective continuum is
roughly the appropriate attitude. This is equivalent to saying that, for
evaluating probability distributions of wealth, the relative risk aversion
of old persons should be near unity. However for young persons with
great dispersion of lifetime utility the curvature of (-) generally
cannot be neglected. Thus, for them, risk preference or risk aversion on
the subjective continuum plays an important role in finding the optimal
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decision. so that relative risk aversion may differ quite substantially
from unity.

According to (21) our preference hypothesis implies furthermore that
the propensity to consume out of wealth depends on the decision
maker's time preference and the distance of the time horizon, but not
on present or future investment opportunities. The reason is that the
income and the substitution effect of a change in expected returns just
offset each other. This simplifies the actual decision enormously, for it
is neither necessary for the decision maker to chose the actual risk
projects simultaneously with the consumption level nor to know which
investment opportunities will be available in future. In sum, in order to
derive the optimal decision at any point in time the multiperiod
optimizer needs only to know his or her own preferences and the
current opportunity set of risk projects.

With this result the laws of Weber and Fechner provide to a certain
extent a rehabilitation of the simplest risk theoretic model of the
expected utility-of-wealth maximizer. This is at first glance surprising,
but in fact not difficult to explain. On the one hand. the phenomenon
of ratio perception seemed to originate from the evolutionary optimi-
zation process which adapted our organism to the ratio code in which
environmental signals are written. On the other hand. with the assump-
tion of stochastic returns to scale we made the economic decision maker
operate in a world where the relevant information is also formulated in
a ratio code. Is it then still surprising that he finds simple behavioural
rules for this world as well?

4. Competing approaches

Our psychophysical hypothesis on the shape of the von Neumann-
Morgenstern function U{w) is not the only one which has been estab-
lished. There are others which contrust sharply with it

Those of Toérngvist (1945), Friedman and Savage (1948) and
Markowitz (1952) should be mentioned first. These authors have in
common their construction of U(+) from concave and convex segments
so that the preference can be depicted not only for insurance contracts
but also for gambling. Yet their approach is not very satisfactory, for
gambling contradicts the expected utility rule as such. On the one hand,
contrary to the fundamental axiom of ordering, gambling normally
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implies that the decision maker is not only interested in the eventual
probability distributions, but also in the way they are generated. On the
other hand. gamblers frequently derive their decisions from some
mystic rules which are not compatible with the other rationality axioms
underlying the expected-utility rule either. An argument related to the
latter is expressed very clearly by Hicks (1962: 793). who states:
‘...gambling is relaxation. To expect consistency in gambling is futile
for gambling is a rest from consistency.’

Another hypothesis, established by Arrow (1965: 28-44, 1970:
90-120), 1s that relative risk aversion increases with wealth. Arrow’s
argument is twofold, theoretical and empirical. Concerning the former,
he is able to show that there is an axiom system from which not only
the expected-utility rule itself, but also a utility boundedness theorem
stating that lim, . U(w) < oo and lim_ _ ,U(w)> —cc can be de-
rived. Then, since boundedness from below implies that relative risk
aversion { ¢) falls short of unity for w — 0 and boundedness from above
implies that it exceeds unity for w — o0, he concludes that relative risk
aversion is increasing. It is not intended to discuss here the question of
whether Arrow’s axiom system or an alternative system, which does not
imply the utility boundedness theorem, 1s the more realistic [22}. For, as
Stiglitz (1969) points out, even if the utility function were bounded at
its extremes 1t might have any shape in between. In particular suppose

] w = world’s value,
s

= [

w R W
where € < 1, such that risk aversion increases with age. Then the utility
function is bounded, but nevertheless cannot have behavioural implica-
tions different from those of the unbounded function U(w)=w' ",
e<1.

Arrow's empirical argument is that historically the stock of money
has grown more quickly than wealth, which, on a basis of a portfolio
model with a risky asset and money as the only safe asset, seems to
imply that relative risk aversion increases with wealth. This argument is
not convincing either. Firstly, the empirical investigations quoted by
Arrow do not clearly support his hypothesis. The fact that the stock of
real balances grew more quickly than wealth seems to be due to the

{22} A comparative discussion is given in Sian (1980: ¢h. 11 C 2.y
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secularly fallen interest rates rather than to the shape of the risk
preference function. This indeed is the result of Latané (1960) and
Meltzer (1963), who, in contrast to the other authors mentioned by
Arrow, install interest rates as explanatory variables in their tests and
come to the conclusion that the hypothesis of a unitary partial wealth
elasticity of money cannot be rejected. Secondly, as Stiglitz (1969),
Shell (1972) and others remarked, money demand as such cannot easily
be explained by a stochastic portfolio model, for in reality there are
short-run interest-bearing assets available which clearly dominate mo-
ney. Thirdly, even if all this were not true, the secularly risen average
age of population can easily explain Arrow’s observation if a quite
modest degree of risk aversion (0 < ¢ < 1) is the standard case, for then
relative risk aversion increases with age, even though it does not
increase with wealth.

5. Conclusion

In this article two psychophysical laws were presented in order to study
their implications for risk preference functions. One is Weber's relativ-
ity law and the other Fechner's law, which was shown to be the only
possibility that made the number-matching and interval-method mea-
surements of psychophysics compatible. For the myopic expected util-
ity-of-wealth maximizer we referred to Weber's law alone and derived
the hypothesis of constant relative risk aversion. However, for the
multiperiod optimizer, Fechner’s law was needed as well. Together with
a modified version of Koopmans' preference functional these two laws
imply a family of preference functionals which are either of an additive
logarithmic or a multiplicative Cobb-Douglas type. This family has very
appealing implications in a world of stochastic constant returns (o
scale. For his actual decision the multiperiod optimizer exhibits con-
stant relative risk aversion as the myopic optimizer does. However, the
degree of this risk aversion generally changes over time: regardless of its
initial value, with the passage of time it approaches the value of unity.
Furthermore, the consumption decision is independent of actual and
future investment opportunities. Thus the agent neither has to make the
consumption decision simultaneously with the selection of an optimal
risk project nor needs any information about the future except about
his own preferences.
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